File size: 13,706 Bytes
a56fa30 |
1 |
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f0ce0a804c0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f0ce0a80550>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f0ce0a805e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f0ce0a80670>", "_build": "<function ActorCriticPolicy._build at 0x7f0ce0a80700>", "forward": "<function ActorCriticPolicy.forward at 0x7f0ce0a80790>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f0ce0a80820>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f0ce0a808b0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f0ce0a80940>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f0ce0a809d0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f0ce0a80a60>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f0ce0a80af0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f0ce1392d40>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 557056, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1713169404719355257, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAK14IL4pExy8I9Nru1vzp7kNZIU9JauLOgAAgD8AAIA/GoCGvfacb7qTsuu6RK8PtSPwkbqKZQg6AAAAAAAAgD/zW4o9aG3IPsr3pjtXtme+AzuDPV/PmrwAAAAAAAAAAJoFtjsbs60/fkQwPacksb6KToq8emEXvAAAAAAAAAAAzaxfPnNOnj5zCWK+rhu1vtMQpbzqPJW9AAAAAAAAAAAAnQw+iFy2PjXkOb6NDaK+jYzMufOE+b0AAAAAAAAAAM3/uDzx6AU/DVbovH/Nob7Ym3g9GmsdvQAAAAAAAAAAppxBvsho2rxIMHm4nZNDt4WoPT5nRrk3AACAPwAAgD96RpG+hmCAP17F7L6ZBhG/Dpi1vkUa0L0AAAAAAAAAABrliz2RBq4/Qq3BPgzfsb7vrys8lhHVPQAAAAAAAAAAsx8fPfHmGjzyhEK+LktvvqCGKL1rRyg8AAAAAAAAAABT9kG+HgevPyPC775Oigu/116ovqsPfrwAAAAAAAAAAE1WTb2skaU/0zKJvg5ABL9TorG9I7TyvQAAAAAAAAAAWq/ePSm+uT5TUwC7Qdlxvtn1QD1UTUY7AAAAAAAAAAAav3s9UsDsuRDycrhDa82zcm6Xu667jzcAAIA/AACAP7P7C74dHlg+qza5PfeWY75nSv28YjQNvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.442944, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVDwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHMI9NJvo/2MAWyUS/KMAXSUR0CcMQ9g4OtodX2UKGgGR0BvOXbfxc3VaAdL8GgIR0CcMReTmnwYdX2UKGgGR0Bs9ODL8rI6aAdNMwFoCEdAnDGVtKqXGHV9lChoBkdAcqqaN+9almgHTQEBaAhHQJwyHu+h4+t1fZQoaAZHQHD4kP+XJHRoB0vlaAhHQJwysy9EkSp1fZQoaAZHQHMl1qrR0EJoB0vsaAhHQJwzMEjgQ6J1fZQoaAZHQHJUcTWXkYJoB0vqaAhHQJwz2oybhFV1fZQoaAZHQHD38figkC5oB0vdaAhHQJwz44tHxz91fZQoaAZHQHEMq/h2nsNoB00SAWgIR0CcNFyTpxFRdX2UKGgGR0ByBH8Nx2jgaAdL/GgIR0CcNHxTKkmAdX2UKGgGR0BxryNHYpUhaAdNAwFoCEdAnDSrzwtrbnV9lChoBkdAX1msV+I/JWgHTegDaAhHQJw1WZE2Hcl1fZQoaAZHQHFuwUg0TDhoB0vqaAhHQJw18iLVFx51fZQoaAZHQG/TU0elsP9oB0vdaAhHQJw3di7TUiJ1fZQoaAZHQHGOkJrtVrBoB0vuaAhHQJw37RrrPdF1fZQoaAZHQFHhQtz0Yj1oB0vWaAhHQJw4NqASWZ91fZQoaAZHQHLnbmyPdVNoB008AWgIR0CcOJQ0GeMAdX2UKGgGR0BxLGvr4WUKaAdNAwFoCEdAnDj6VD8cdnV9lChoBkdAcnLpFTefqWgHS+NoCEdAnDl96HCXQnV9lChoBkdAcK7ZrYXfqGgHS/RoCEdAnDmGYWtU43V9lChoBkdAct0H+ZPVNGgHS+NoCEdAnDoVtsN2DHV9lChoBkdAcSXrHU+cIGgHS+loCEdAnDpGuHN5dHV9lChoBkdAcV5IXTEzf2gHS+1oCEdAnDslrAP/aXV9lChoBkdAcER446wMY2gHS/hoCEdAnDtC1NQCS3V9lChoBkdAcM7fXPJJXmgHS+xoCEdAnDvJdv863nV9lChoBkdAY/kKHfuTimgHTegDaAhHQJw8g4HX2/V1fZQoaAZHQHKWPYBeXzFoB00yAWgIR0CcPKOI68xsdX2UKGgGR0BxLg6JZW7waAdNEgFoCEdAnD1RFuvU0HV9lChoBkdAcTqEdNnGsGgHS+toCEdAnD69hJAdGXV9lChoBkdAZrjfLs8gZGgHTegDaAhHQJw+1onKGL11fZQoaAZHQHH2tFF2FFloB00JAWgIR0CcPu9Q40djdX2UKGgGR0Byd5dQfp2VaAdNMwFoCEdAnD+VjEvTPXV9lChoBkdAcnOfF72L52gHTQgBaAhHQJw/3dKujh11fZQoaAZHQHDQJUYKpkxoB0v6aAhHQJxABA1Nxlx1fZQoaAZHQHKTN7F85S5oB00tAWgIR0CcQBtozvZzdX2UKGgGR0BxeC4z7/GVaAdNGAFoCEdAnEC7e67NCHV9lChoBkdAcM/Y7aIvamgHTQoBaAhHQJxBHZqVQhx1fZQoaAZHQHEiXUMG5c1oB00aAWgIR0CcQVZFocrBdX2UKGgGR0BxMxcTrVvuaAdNCwFoCEdAnEH7Pt2LYXV9lChoBkdAcdw/MW43FWgHS/toCEdAnEIYatLcsXV9lChoBkdAcOCRKHwgDGgHS+loCEdAnEJTQzDXOHV9lChoBkdAcBZVj7Q9imgHS9NoCEdAnEQwbMottnV9lChoBkdAcElEORT0hGgHTRgBaAhHQJxEerNnoPl1fZQoaAZHQHPDG9cry2BoB0u+aAhHQJxFKbNKRMh1fZQoaAZHQG+VJbD/EO1oB00JAWgIR0CcRms189fUdX2UKGgGR0BwJF5NXYDlaAdL6mgIR0CcRqhSLqD9dX2UKGgGR0BxexWZJCjUaAdNJAFoCEdAnEdCGahHsnV9lChoBkdAcQzpxWDHwWgHS+FoCEdAnEewMDwH7nV9lChoBkdAcOu3K0UoKGgHS9doCEdAnEfhmK64D3V9lChoBkdAcYHSpR4yGmgHTTMBaAhHQJxb99nbqQl1fZQoaAZHQHGSUUfxMFloB0vlaAhHQJxcB99c8kl1fZQoaAZHQG5HC5/b0vpoB0v4aAhHQJxdB0lqrR11fZQoaAZHQHDWTp1RtP5oB00HAWgIR0CcXTDjzZpSdX2UKGgGR0BxzrF3pwCKaAdL7WgIR0CcXyf029+PdX2UKGgGR0BzBtMj/uLKaAdL62gIR0CcX7T/ACXAdX2UKGgGR0Bxwf1Gsmv4aAdNEgFoCEdAnGASdz4k/3V9lChoBkdAcC2e4Cp3o2gHS+BoCEdAnGBLy6MBIXV9lChoBkdAcbLbhm5DqmgHTVMCaAhHQJxgyhkAggZ1fZQoaAZHQG6hF5fMOgBoB00HAWgIR0CcYbXwsoUjdX2UKGgGR0BuE0VnEl3RaAdL8WgIR0CcYgGYrrgPdX2UKGgGR0BwZkzi0fHQaAdL1WgIR0CcYqLeANG3dX2UKGgGR0BxF6mNzbN9aAdNHwFoCEdAnGLyrxRVInV9lChoBkdAbx8KG+K0lmgHTRsBaAhHQJxjJy7wrlN1fZQoaAZHQHE7sTviLl5oB00FAWgIR0CcZR2rn1WbdX2UKGgGR0Bw00COmzjWaAdNBwFoCEdAnGVYh2W6b3V9lChoBkdAcWXS4e9zwWgHS+5oCEdAnGabpmmLtXV9lChoBkdAcGP6bONYKmgHS9doCEdAnGb7fgrH2nV9lChoBkdAcX4cs189fWgHTQcBaAhHQJxn/DIikft1fZQoaAZHQG2Tlhw2l2xoB0vvaAhHQJxoUK2KEWZ1fZQoaAZHQHLnAyZa3ZxoB0vXaAhHQJxofMibDuV1fZQoaAZHQHBo7dWQwK1oB02PA2gIR0CcaOvqkdmydX2UKGgGR0ByD3Ssr/bTaAdL52gIR0CcaTzS1E3LdX2UKGgGR0Bw624SYgJUaAdL/mgIR0Ccax0Rvm5ldX2UKGgGR0BynLyBkI5YaAdNEgFoCEdAnGuK+ajN6nV9lChoBkdAcKLhDPWxyGgHS/doCEdAnG1rnkkrw3V9lChoBkdAcMfvXbuc+mgHTQ8BaAhHQJxuAtYjjaR1fZQoaAZHQHFszyauwHJoB00JAWgIR0Ccb+MUAT7EdX2UKGgGR0BwjbhKlHjIaAdNFgFoCEdAnG/2g3974XV9lChoBkdAcTGCKaXrt2gHS+5oCEdAnHAHVkMCtHV9lChoBkdAcgTzhP0qY2gHS+9oCEdAnHBl5GBnSXV9lChoBkdAcp2YLLIPsmgHS+FoCEdAnHCQq/dqL3V9lChoBkdAcZ5yp71Iy2gHS/5oCEdAnHEEM9bHInV9lChoBkdAZsF/NJOFg2gHTegDaAhHQJxxtdiUgSx1fZQoaAZHQHDfQbIcR15oB00SAWgIR0CcclnBciW3dX2UKGgGR0BjuSG8EmpmaAdN6ANoCEdAnHPHF98Z1nV9lChoBkdAcvHIatLcsWgHS/xoCEdAnHPbrPdEcHV9lChoBkdAcsGYsunMuGgHTSEBaAhHQJx0kQVbiZR1fZQoaAZHQG7vE3sHB1toB0vkaAhHQJx1RxlxwQ11fZQoaAZHQHGs/5HmRvFoB00JAWgIR0CcdiliSaE0dX2UKGgGR0BxntO0svqUaAdL/GgIR0CceNE2YOUddX2UKGgGR0Bw5r2K2rn1aAdNFQFoCEdAnHnAazeGf3V9lChoBkdAc0Qa4+bExmgHTQUBaAhHQJx54sCkoF51fZQoaAZHQG5aOuRs/INoB0v7aAhHQJx6GzHCGet1fZQoaAZHQHFOrO3UhFFoB00UAWgIR0Ccek9vCMxXdX2UKGgGR0BwnImD15B1aAdL72gIR0Cceo2USqVAdX2UKGgGR0BxU7efqX4TaAdL32gIR0CcfQJoCdSVdX2UKGgGR0BxV3/echC/aAdNEgFoCEdAnH0mSU1Q7HV9lChoBkdAcSkxQBPsRmgHS/doCEdAnH4oht+CsnV9lChoBkdAb3YGxlg+hWgHS+BoCEdAnH4ybYsd1nV9lChoBkdAYvYDIRywOmgHTegDaAhHQJx+WQuEmIF1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 382, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.99, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.2.1+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |