File size: 13,789 Bytes
5efd176
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    Policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Features extractor to use.\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7816f60e1630>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7816f60e16c0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7816f60e1750>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7816f60e17e0>", "_build": "<function ActorCriticPolicy._build at 0x7816f60e1870>", "forward": "<function ActorCriticPolicy.forward at 0x7816f60e1900>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7816f60e1990>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7816f60e1a20>", "_predict": "<function ActorCriticPolicy._predict at 0x7816f60e1ab0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7816f60e1b40>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7816f60e1bd0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7816f60e1c60>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7816f60e4f80>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1710653831997248949, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGbenLtc6w66TZlWu2Z+4rMIjN277pF6OgAAgD8AAIA/MzNPO65Tirq8JZy7VPhKNy5yEbveVLK2AACAPwAAgD8zAcw89uBhuhqiOzoi5xw1HI3/ukBZXLkAAIA/AACAP8BRnT7hWAs/LaqzvTok4r7Lna0+RsBLvgAAAAAAAAAAzWHHPFzDdbpqRtW7E+yqtkVM7Dl3/hw2AACAPwAAgD9mQGu8j8Ycus0ygTr3IKs1q7gROl4JmLkAAIA/AACAP2bGITr2lGu6yNzpOvqxwjW0M6W6IhoJugAAgD8AAIA/JsTOvWV7kD8apoa+fnMHv6sve77q/nu+AAAAAAAAAABmXn8709WyP0zBNDwjL5e+s2CvvGYPZzwAAAAAAAAAAGbHCT5EyJc9EP2PvTyxer60ijy9vVgePgAAAAAAAAAA85+GvYVD47mG36873vUNNDBptTrMCMy6AACAPwAAgD8z4768D1UAPnyQoL0pAFq+2kGAvEkFkL0AAAAAAAAAAABQ27tSKOu56uFxu6Y69rWEPxC7jMuMOgAAgD8AAIA/oLogvj0SID+nUgw+9BiLvkQVNr0VQaQ7AAAAAAAAAACaJcu84XrWuFZnSjOwHPGuae3uumvR0LMAAIA/AACAP2YjwzzswYW50RSqt9LNkLZMozK7ZfjXNgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGNewmE4//yMAWyUTegDjAF0lEdAkEx+W8h9s3V9lChoBkdAb3i+iaiKzmgHTZYCaAhHQJBTCTQmeDp1fZQoaAZHQGQ0XC0ngHhoB03oA2gIR0CQWbMfzSThdX2UKGgGR0BmEE0iyIHkaAdN6ANoCEdAkF9YfwI+n3V9lChoBkdAZIiYekpI+WgHTegDaAhHQJBjHWSU1Q91fZQoaAZHQGjNXgk1MuhoB03oA2gIR0CQY6H5aePJdX2UKGgGR0BkD82FWXC1aAdN6ANoCEdAkGVDjWCmM3V9lChoBkdAZnRHd43WF2gHTegDaAhHQJBlu+TNdJJ1fZQoaAZHQGJ27f51vEVoB03oA2gIR0CQanrHlwLmdX2UKGgGR0BlW4uTRplCaAdN6ANoCEdAkGqt0zTF2nV9lChoBkdAaKX0Yj0L+mgHTegDaAhHQJB04Lsrupl1fZQoaAZHQGDlzho/RmdoB03oA2gIR0CQdjSvkiljdX2UKGgGR0BnLCrFOwgUaAdN6ANoCEdAkItILofSyHV9lChoBkdAZO7nkDIRy2gHTegDaAhHQJCNKHYYixF1fZQoaAZHQGWqoT4+KTBoB03oA2gIR0CQj6i6QNkOdX2UKGgGR0Bl0F43WFviaAdN6ANoCEdAkJSleruIAXV9lChoBkdAZJdRjz7MxGgHTegDaAhHQJCXGv7m+0x1fZQoaAZHQHHdPVRUFStoB01VAWgIR0CQnTSV4X41dX2UKGgGR0BnSxeLNwBHaAdN6ANoCEdAkJ1RDG96C3V9lChoBkdAZpRULlV94WgHTegDaAhHQJCinkgfU4J1fZQoaAZHQGVqQ5NoJzFoB03oA2gIR0CQps9ovi97dX2UKGgGR0Bmbb4593KTaAdN6ANoCEdAkKqZVXFLnXV9lChoBkdAZweTURWcSWgHTegDaAhHQJCrJHEuQIV1fZQoaAZHQGHm+HzpX6toB03oA2gIR0CQrNUahpQDdX2UKGgGR0Bk3PAEdNnHaAdN6ANoCEdAkK1JwsGxEHV9lChoBkdAY/bp/PPcBWgHTegDaAhHQJCyKQKa5PN1fZQoaAZHQGRVv5pJwsJoB03oA2gIR0CQslyj59E1dX2UKGgGR0BxCzeEZiuuaAdNkQJoCEdAkLiWVu76HnV9lChoBkdAZBVRMN+b3GgHTegDaAhHQJC/MOVgQYl1fZQoaAZHQGJXMCDEm6ZoB03oA2gIR0CQwKp97WupdX2UKGgGR0Bn5ftlZowmaAdN6ANoCEdAkNYPdyksSXV9lChoBkdAY44hXbM5fmgHTegDaAhHQJDZAWYWtU51fZQoaAZHQHCxjArQPZtoB037AWgIR0CQ3DLHdXT3dX2UKGgGR0Bw0jRzBAObaAdNoQNoCEdAkN1/ZZjhDXV9lChoBkdAZpiQ8OkLyGgHTegDaAhHQJDp+VTrE+B1fZQoaAZHQGZYOrQw9JVoB03oA2gIR0CQ6iK9wm3OdX2UKGgGR0BwJRE0BOpLaAdN0QNoCEdAkO7OVopQUHV9lChoBkdAZk8ABkqc3GgHTegDaAhHQJD0bRmbsnl1fZQoaAZHQF2xLt/nW8RoB03oA2gIR0CQ+BxUvPC3dX2UKGgGR0BgFnKEFnqWaAdN6ANoCEdAkPipeRgZ0nV9lChoBkdAYbkAmzByj2gHTegDaAhHQJD602zfJmx1fZQoaAZHQHHMStzS1E5oB00QAmgIR0CQ/TuyNXHSdX2UKGgGR0BiBWrQw9JSaAdN6ANoCEdAkP9tyLhrFnV9lChoBkdAY91o4+8oQWgHTegDaAhHQJD/niWE9Md1fZQoaAZHQGXhu2Zy+6BoB03oA2gIR0CRBTWBSUC8dX2UKGgGR0BB48KG+K0laAdL9GgIR0CRBU8WKuSwdX2UKGgGR0Bj+4UlAu7IaAdN6ANoCEdAkQoXNxEORXV9lChoBkdAaAyuoxYaHmgHTegDaAhHQJELN7v5P/J1fZQoaAZHQGbGtet0V8FoB03oA2gIR0CRDnRU3n6mdX2UKGgGR0BlHt/WlMyraAdN6ANoCEdAkSR5k078vXV9lChoBkdAaVwQ4CIUJ2gHTegDaAhHQJEnH2PDHfd1fZQoaAZHQGKd5Pdl/YtoB03oA2gIR0CRMgFPi1iOdX2UKGgGR0BoUVt4zJp4aAdN6ANoCEdAkTIe2y9mH3V9lChoBkdAYZOKLKmsNmgHTegDaAhHQJE2Hpqynk11fZQoaAZHQGJoPomois5oB03oA2gIR0CRO47xNIsidX2UKGgGR0BmEPaL4vexaAdN6ANoCEdAkT8yon8baXV9lChoBkdAZLbRsMy8BmgHTegDaAhHQJFCGNJe3QV1fZQoaAZHQGL7/6XSjQBoB03oA2gIR0CRRblMyrPudX2UKGgGR0BnQVVaOgg6aAdN6ANoCEdAkUkzL4etCHV9lChoBkdAZIdJIUahpWgHTegDaAhHQJFJcZ2pyZN1fZQoaAZHQGJyXzlLeyloB03oA2gIR0CRTqdjXnQqdX2UKGgGR0BnD5sVLzwuaAdN6ANoCEdAkU7DENvwVnV9lChoBkdAYh6PTXrdFmgHTegDaAhHQJFT2IFeOXF1fZQoaAZHQGPnijcmBvtoB03oA2gIR0CRVSxtYSxrdX2UKGgGR0BkVG4y44IbaAdN6ANoCEdAkVi7ojfNzXV9lChoBkdAZfieJ53Tu2gHTegDaAhHQJFs7CqIacZ1fZQoaAZHQEm7CgsbvPVoB0v4aAhHQJFtNJL/S6V1fZQoaAZHQGFqJj+aScNoB03oA2gIR0CRb73MINVjdX2UKGgGR0BiPX779AHFaAdN6ANoCEdAkX0/Nu+AVnV9lChoBkdAZCC8wHqu82gHTegDaAhHQJF9XPX05EN1fZQoaAZHQGXbJHAh0QtoB03oA2gIR0CRgZ4keIVNdX2UKGgGR0Bosw3eenQ6aAdN6ANoCEdAkYdCauwHJXV9lChoBkdAZ+K/1xsEaGgHTegDaAhHQJGLAunMt9R1fZQoaAZHQGQuaIWP91loB03oA2gIR0CRjfNrCWNWdX2UKGgGR0BijRJPIn0DaAdN6ANoCEdAkZCe1v2oN3V9lChoBkdAZXjNxlxwQ2gHTegDaAhHQJGTEyi22G91fZQoaAZHQGCcCWu5jH5oB03oA2gIR0CRk04IrvsrdX2UKGgGR0BlwWrZJ04jaAdN6ANoCEdAkZjeZXuE3HV9lChoBkdAY7Rkn1Fpf2gHTegDaAhHQJGeb0Bfa6B1fZQoaAZHQGQF9rwe/6BoB03oA2gIR0CRn8sjVx0ddX2UKGgGR0BiqHlCCz1LaAdN6ANoCEdAkaS47eVLSXV9lChoBkdAZGhobn5i3GgHTegDaAhHQJGoc12q1gJ1fZQoaAZHQGJH+d9Ujs5oB03oA2gIR0CRui8cuJ1rdX2UKGgGR0Bn0yL/CIk7aAdN6ANoCEdAkbypXdTHbXV9lChoBkdAYQKiPhhpg2gHTegDaAhHQJHH2kFfReF1fZQoaAZHQGfUoxpL26FoB03oA2gIR0CRx/Y5T6zmdX2UKGgGR0BjWSdOIqLCaAdN6ANoCEdAkcvpWvKU3XV9lChoBkdAYWi23KB/Z2gHTegDaAhHQJHRk6aLGaR1fZQoaAZHQGDX4eLehwloB03oA2gIR0CR1hea8YhudX2UKGgGR0BmhvysjmjkaAdN6ANoCEdAkdi+9vjwQXV9lChoBkdAZ3Q3ZPEbYWgHTegDaAhHQJHbLFZPl+51fZQoaAZHQGiYYX40uUVoB03oA2gIR0CR3UvWpZOjdX2UKGgGR0BjbF4s3AEdaAdN6ANoCEdAkd17gOz6anV9lChoBkdAX8AjTrmhd2gHTegDaAhHQJHiOmO2iL51fZQoaAZHQGIYv1ct5D9oB03oA2gIR0CR5y/IbOu8dX2UKGgGR0Bhm6lrM1TBaAdN6ANoCEdAkeh2tQsPKHV9lChoBkdAUXSzw+dK/WgHS61oCEdAker6U3XI2nV9lChoBkdAYbynssxwhmgHTegDaAhHQJHr2cI7eVN1fZQoaAZHQGe8P/zasZJoB03oA2gIR0CR7mYxtYSydX2UKGgGR0BmehzYEnstaAdN6ANoCEdAke6oMBp5/3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True  True  True  True  True  True  True  True]", "bounded_above": "[ True  True  True  True  True  True  True  True]", "_shape": [8], "low": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "low_repr": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high_repr": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.2.1+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}