File size: 2,936 Bytes
e191bc8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
945aba4
e191bc8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
---
base_model:
- mistralai/Mixtral-8x7B-v0.1
- mistralai/Mixtral-8x7B-Instruct-v0.1
- jondurbin/bagel-dpo-8x7b-v0.2
- cognitivecomputations/dolphin-2.7-mixtral-8x7b
- NeverSleep/Noromaid-v0.4-Mixtral-Instruct-8x7b-Zloss
- ycros/BagelMIsteryTour-v2-8x7B
- smelborp/MixtralOrochi8x7B
language:
- en
library_name: transformers
quantized_by: mradermacher
tags:
- mergekit
- merge
---
## About

weighted/imatrix quants of https://huggingface.co/rhplus0831/maid-yuzu-v8-alter


<!-- provided-files -->
static quants are available at https://huggingface.co/mradermacher/maid-yuzu-v8-alter-GGUF
## Usage

If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.

## Provided Quants

(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)

| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/maid-yuzu-v8-alter-i1-GGUF/resolve/main/maid-yuzu-v8-alter.i1-Q2_K.gguf) | i1-Q2_K | 17.6 | IQ3_XXS probably better |
| [GGUF](https://huggingface.co/mradermacher/maid-yuzu-v8-alter-i1-GGUF/resolve/main/maid-yuzu-v8-alter.i1-Q3_K_S.gguf) | i1-Q3_K_S | 20.7 | IQ3_XS probably better |
| [GGUF](https://huggingface.co/mradermacher/maid-yuzu-v8-alter-i1-GGUF/resolve/main/maid-yuzu-v8-alter.i1-Q3_K_M.gguf) | i1-Q3_K_M | 22.8 | IQ3_S probably better |
| [GGUF](https://huggingface.co/mradermacher/maid-yuzu-v8-alter-i1-GGUF/resolve/main/maid-yuzu-v8-alter.i1-Q3_K_L.gguf) | i1-Q3_K_L | 24.4 | IQ3_M probably better |
| [GGUF](https://huggingface.co/mradermacher/maid-yuzu-v8-alter-i1-GGUF/resolve/main/maid-yuzu-v8-alter.i1-Q4_K_S.gguf) | i1-Q4_K_S | 27.0 | optimal size/speed/quality |
| [GGUF](https://huggingface.co/mradermacher/maid-yuzu-v8-alter-i1-GGUF/resolve/main/maid-yuzu-v8-alter.i1-Q4_K_M.gguf) | i1-Q4_K_M | 28.7 | fast, medium quality |
| [GGUF](https://huggingface.co/mradermacher/maid-yuzu-v8-alter-i1-GGUF/resolve/main/maid-yuzu-v8-alter.i1-Q5_K_S.gguf) | i1-Q5_K_S | 32.5 |  |
| [GGUF](https://huggingface.co/mradermacher/maid-yuzu-v8-alter-i1-GGUF/resolve/main/maid-yuzu-v8-alter.i1-Q5_K_M.gguf) | i1-Q5_K_M | 33.5 |  |
| [GGUF](https://huggingface.co/mradermacher/maid-yuzu-v8-alter-i1-GGUF/resolve/main/maid-yuzu-v8-alter.i1-Q6_K.gguf) | i1-Q6_K | 38.6 | practically like static Q6_K |


Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png)

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9

## Thanks

I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.

<!-- end -->