File size: 5,045 Bytes
09917d3 e76ee2c e23e44c 09917d3 e23e44c 09917d3 3570c21 09917d3 3570c21 9bd2a0c 3570c21 09917d3 aab7f02 09917d3 9bd2a0c 7a02673 df07a42 81f08aa bf2c72a df07a42 e86e99e bf2c72a df07a42 48456c6 df07a42 48456c6 df07a42 bf2c72a 236bfd0 1e89a10 e86e99e d7fa418 ca1c822 09917d3 91ce221 aab7f02 91ce221 aab7f02 f65f788 e76ee2c bdb8752 09917d3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
---
base_model: Doctor-Shotgun/lzlv-limarpv3-l2-70b
language:
- en
library_name: transformers
quantized_by: mradermacher
tags:
- llama
- llama 2
---
## About
weighted/imatrix quants of https://huggingface.co/Doctor-Shotgun/lzlv-limarpv3-l2-70b
<!-- provided-files -->
static quants are available at https://huggingface.co/mradermacher/lzlv-limarpv3-l2-70b-GGUF
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/lzlv-limarpv3-l2-70b-i1-GGUF/resolve/main/lzlv-limarpv3-l2-70b.i1-IQ1_S.gguf) | i1-IQ1_S | 15.0 | for the desperate |
| [GGUF](https://huggingface.co/mradermacher/lzlv-limarpv3-l2-70b-i1-GGUF/resolve/main/lzlv-limarpv3-l2-70b.i1-IQ1_M.gguf) | i1-IQ1_M | 16.0 | mostly desperate |
| [GGUF](https://huggingface.co/mradermacher/lzlv-limarpv3-l2-70b-i1-GGUF/resolve/main/lzlv-limarpv3-l2-70b.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 18.7 | |
| [GGUF](https://huggingface.co/mradermacher/lzlv-limarpv3-l2-70b-i1-GGUF/resolve/main/lzlv-limarpv3-l2-70b.i1-IQ2_XS.gguf) | i1-IQ2_XS | 20.8 | |
| [GGUF](https://huggingface.co/mradermacher/lzlv-limarpv3-l2-70b-i1-GGUF/resolve/main/lzlv-limarpv3-l2-70b.i1-IQ2_S.gguf) | i1-IQ2_S | 21.8 | |
| [GGUF](https://huggingface.co/mradermacher/lzlv-limarpv3-l2-70b-i1-GGUF/resolve/main/lzlv-limarpv3-l2-70b.i1-IQ2_M.gguf) | i1-IQ2_M | 23.7 | |
| [GGUF](https://huggingface.co/mradermacher/lzlv-limarpv3-l2-70b-i1-GGUF/resolve/main/lzlv-limarpv3-l2-70b.i1-Q2_K.gguf) | i1-Q2_K | 25.9 | IQ3_XXS probably better |
| [GGUF](https://huggingface.co/mradermacher/lzlv-limarpv3-l2-70b-i1-GGUF/resolve/main/lzlv-limarpv3-l2-70b.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 27.4 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/lzlv-limarpv3-l2-70b-i1-GGUF/resolve/main/lzlv-limarpv3-l2-70b.i1-IQ3_XS.gguf) | i1-IQ3_XS | 28.6 | |
| [GGUF](https://huggingface.co/mradermacher/lzlv-limarpv3-l2-70b-i1-GGUF/resolve/main/lzlv-limarpv3-l2-70b.i1-Q3_K_XS.gguf) | i1-Q3_K_XS | 28.7 | |
| [GGUF](https://huggingface.co/mradermacher/lzlv-limarpv3-l2-70b-i1-GGUF/resolve/main/lzlv-limarpv3-l2-70b.i1-IQ3_S.gguf) | i1-IQ3_S | 30.3 | beats Q3_K* |
| [GGUF](https://huggingface.co/mradermacher/lzlv-limarpv3-l2-70b-i1-GGUF/resolve/main/lzlv-limarpv3-l2-70b.i1-Q3_K_S.gguf) | i1-Q3_K_S | 30.3 | IQ3_XS probably better |
| [GGUF](https://huggingface.co/mradermacher/lzlv-limarpv3-l2-70b-i1-GGUF/resolve/main/lzlv-limarpv3-l2-70b.i1-IQ3_M.gguf) | i1-IQ3_M | 31.4 | |
| [GGUF](https://huggingface.co/mradermacher/lzlv-limarpv3-l2-70b-i1-GGUF/resolve/main/lzlv-limarpv3-l2-70b.i1-Q3_K_M.gguf) | i1-Q3_K_M | 33.7 | IQ3_S probably better |
| [GGUF](https://huggingface.co/mradermacher/lzlv-limarpv3-l2-70b-i1-GGUF/resolve/main/lzlv-limarpv3-l2-70b.i1-Q3_K_L.gguf) | i1-Q3_K_L | 36.6 | IQ3_M probably better |
| [GGUF](https://huggingface.co/mradermacher/lzlv-limarpv3-l2-70b-i1-GGUF/resolve/main/lzlv-limarpv3-l2-70b.i1-IQ4_XS.gguf) | i1-IQ4_XS | 37.2 | |
| [GGUF](https://huggingface.co/mradermacher/lzlv-limarpv3-l2-70b-i1-GGUF/resolve/main/lzlv-limarpv3-l2-70b.i1-Q4_0.gguf) | i1-Q4_0 | 39.1 | fast, low quality |
| [GGUF](https://huggingface.co/mradermacher/lzlv-limarpv3-l2-70b-i1-GGUF/resolve/main/lzlv-limarpv3-l2-70b.i1-Q4_K_S.gguf) | i1-Q4_K_S | 39.7 | optimal size/speed/quality |
| [GGUF](https://huggingface.co/mradermacher/lzlv-limarpv3-l2-70b-i1-GGUF/resolve/main/lzlv-limarpv3-l2-70b.i1-Q4_K_M.gguf) | i1-Q4_K_M | 41.8 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/lzlv-limarpv3-l2-70b-i1-GGUF/resolve/main/lzlv-limarpv3-l2-70b.i1-Q5_K_S.gguf) | i1-Q5_K_S | 47.9 | |
| [GGUF](https://huggingface.co/mradermacher/lzlv-limarpv3-l2-70b-i1-GGUF/resolve/main/lzlv-limarpv3-l2-70b.i1-Q5_K_M.gguf) | i1-Q5_K_M | 49.2 | |
| [PART 1](https://huggingface.co/mradermacher/lzlv-limarpv3-l2-70b-i1-GGUF/resolve/main/lzlv-limarpv3-l2-70b.i1-Q6_K.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/lzlv-limarpv3-l2-70b-i1-GGUF/resolve/main/lzlv-limarpv3-l2-70b.i1-Q6_K.gguf.part2of2) | i1-Q6_K | 57.0 | practically like static Q6_K |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):
![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png)
And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.
<!-- end -->
|