File size: 5,035 Bytes
2f414cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7fdc609
 
 
 
 
 
2f414cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
831640c
2f414cd
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
---
base_model: google/gemma-2-27b
extra_gated_button_content: Acknowledge license
extra_gated_heading: Access Gemma on Hugging Face
extra_gated_prompt: To access Gemma on Hugging Face, you’re required to review and
  agree to Google’s usage license. To do this, please ensure you’re logged in to Hugging
  Face and click below. Requests are processed immediately.
language:
- en
library_name: transformers
license: gemma
quantized_by: mradermacher
---
## About

<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type:  -->
<!-- ### tags: nicoboss -->
weighted/imatrix quants of https://huggingface.co/google/gemma-2-27b

<!-- provided-files -->
static quants are available at https://huggingface.co/mradermacher/gemma-2-27b-GGUF
## Usage

If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.

## Provided Quants

(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)

| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/gemma-2-27b-i1-GGUF/resolve/main/gemma-2-27b.i1-IQ1_S.gguf) | i1-IQ1_S | 6.2 | for the desperate |
| [GGUF](https://huggingface.co/mradermacher/gemma-2-27b-i1-GGUF/resolve/main/gemma-2-27b.i1-IQ1_M.gguf) | i1-IQ1_M | 6.8 | mostly desperate |
| [GGUF](https://huggingface.co/mradermacher/gemma-2-27b-i1-GGUF/resolve/main/gemma-2-27b.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 7.7 |  |
| [GGUF](https://huggingface.co/mradermacher/gemma-2-27b-i1-GGUF/resolve/main/gemma-2-27b.i1-IQ2_XS.gguf) | i1-IQ2_XS | 8.5 |  |
| [GGUF](https://huggingface.co/mradermacher/gemma-2-27b-i1-GGUF/resolve/main/gemma-2-27b.i1-IQ2_S.gguf) | i1-IQ2_S | 8.8 |  |
| [GGUF](https://huggingface.co/mradermacher/gemma-2-27b-i1-GGUF/resolve/main/gemma-2-27b.i1-IQ2_M.gguf) | i1-IQ2_M | 9.5 |  |
| [GGUF](https://huggingface.co/mradermacher/gemma-2-27b-i1-GGUF/resolve/main/gemma-2-27b.i1-Q2_K.gguf) | i1-Q2_K | 10.5 | IQ3_XXS probably better |
| [GGUF](https://huggingface.co/mradermacher/gemma-2-27b-i1-GGUF/resolve/main/gemma-2-27b.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 10.9 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/gemma-2-27b-i1-GGUF/resolve/main/gemma-2-27b.i1-IQ3_XS.gguf) | i1-IQ3_XS | 11.7 |  |
| [GGUF](https://huggingface.co/mradermacher/gemma-2-27b-i1-GGUF/resolve/main/gemma-2-27b.i1-IQ3_S.gguf) | i1-IQ3_S | 12.3 | beats Q3_K* |
| [GGUF](https://huggingface.co/mradermacher/gemma-2-27b-i1-GGUF/resolve/main/gemma-2-27b.i1-Q3_K_S.gguf) | i1-Q3_K_S | 12.3 | IQ3_XS probably better |
| [GGUF](https://huggingface.co/mradermacher/gemma-2-27b-i1-GGUF/resolve/main/gemma-2-27b.i1-IQ3_M.gguf) | i1-IQ3_M | 12.6 |  |
| [GGUF](https://huggingface.co/mradermacher/gemma-2-27b-i1-GGUF/resolve/main/gemma-2-27b.i1-Q3_K_M.gguf) | i1-Q3_K_M | 13.5 | IQ3_S probably better |
| [GGUF](https://huggingface.co/mradermacher/gemma-2-27b-i1-GGUF/resolve/main/gemma-2-27b.i1-Q3_K_L.gguf) | i1-Q3_K_L | 14.6 | IQ3_M probably better |
| [GGUF](https://huggingface.co/mradermacher/gemma-2-27b-i1-GGUF/resolve/main/gemma-2-27b.i1-IQ4_XS.gguf) | i1-IQ4_XS | 14.9 |  |
| [GGUF](https://huggingface.co/mradermacher/gemma-2-27b-i1-GGUF/resolve/main/gemma-2-27b.i1-Q4_0.gguf) | i1-Q4_0 | 15.8 | fast, low quality |
| [GGUF](https://huggingface.co/mradermacher/gemma-2-27b-i1-GGUF/resolve/main/gemma-2-27b.i1-Q4_K_S.gguf) | i1-Q4_K_S | 15.8 | optimal size/speed/quality |
| [GGUF](https://huggingface.co/mradermacher/gemma-2-27b-i1-GGUF/resolve/main/gemma-2-27b.i1-Q4_K_M.gguf) | i1-Q4_K_M | 16.7 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/gemma-2-27b-i1-GGUF/resolve/main/gemma-2-27b.i1-Q5_K_S.gguf) | i1-Q5_K_S | 19.0 |  |
| [GGUF](https://huggingface.co/mradermacher/gemma-2-27b-i1-GGUF/resolve/main/gemma-2-27b.i1-Q5_K_M.gguf) | i1-Q5_K_M | 19.5 |  |
| [GGUF](https://huggingface.co/mradermacher/gemma-2-27b-i1-GGUF/resolve/main/gemma-2-27b.i1-Q6_K.gguf) | i1-Q6_K | 22.4 | practically like static Q6_K |

Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png)

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9

## FAQ / Model Request

See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.

## Thanks

I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to.

<!-- end -->