File size: 4,581 Bytes
dc2da2d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
91ef7bd
 
 
dc2da2d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
---
base_model: internlm/internlm2-20b
datasets:
- ai2_arc
- allenai/ultrafeedback_binarized_cleaned
- argilla/distilabel-intel-orca-dpo-pairs
- jondurbin/airoboros-3.2
- codeparrot/apps
- facebook/belebele
- bluemoon-fandom-1-1-rp-cleaned
- boolq
- camel-ai/biology
- camel-ai/chemistry
- camel-ai/math
- camel-ai/physics
- jondurbin/contextual-dpo-v0.1
- jondurbin/gutenberg-dpo-v0.1
- jondurbin/py-dpo-v0.1
- jondurbin/truthy-dpo-v0.1
- LDJnr/Capybara
- jondurbin/cinematika-v0.1
- WizardLM/WizardLM_evol_instruct_70k
- glaiveai/glaive-function-calling-v2
- jondurbin/gutenberg-dpo-v0.1
- grimulkan/LimaRP-augmented
- lmsys/lmsys-chat-1m
- ParisNeo/lollms_aware_dataset
- TIGER-Lab/MathInstruct
- Muennighoff/natural-instructions
- openbookqa
- kingbri/PIPPA-shareGPT
- piqa
- Vezora/Tested-22k-Python-Alpaca
- ropes
- cakiki/rosetta-code
- Open-Orca/SlimOrca
- b-mc2/sql-create-context
- squad_v2
- mattpscott/airoboros-summarization
- migtissera/Synthia-v1.3
- unalignment/toxic-dpo-v0.2
- WhiteRabbitNeo/WRN-Chapter-1
- WhiteRabbitNeo/WRN-Chapter-2
- winogrande
exported_from: jondurbin/bagel-dpo-20b-v04
language:
- en
library_name: transformers
license: other
license_link: https://huggingface.co/internlm/internlm2-20b#open-source-license
license_name: internlm2-20b
quantized_by: mradermacher
---
## About

<!-- ### convert_type:  -->
<!-- ### vocab_type:  -->
static quants of https://huggingface.co/jondurbin/bagel-dpo-20b-v04


<!-- provided-files -->
weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion.
## Usage

If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.

## Provided Quants

(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)

| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/bagel-dpo-20b-v04-GGUF/resolve/main/bagel-dpo-20b-v04.Q2_K.gguf) | Q2_K | 8.3 |  |
| [GGUF](https://huggingface.co/mradermacher/bagel-dpo-20b-v04-GGUF/resolve/main/bagel-dpo-20b-v04.IQ3_XS.gguf) | IQ3_XS | 9.1 |  |
| [GGUF](https://huggingface.co/mradermacher/bagel-dpo-20b-v04-GGUF/resolve/main/bagel-dpo-20b-v04.Q3_K_S.gguf) | Q3_K_S | 9.5 |  |
| [GGUF](https://huggingface.co/mradermacher/bagel-dpo-20b-v04-GGUF/resolve/main/bagel-dpo-20b-v04.IQ3_S.gguf) | IQ3_S | 9.6 | beats Q3_K* |
| [GGUF](https://huggingface.co/mradermacher/bagel-dpo-20b-v04-GGUF/resolve/main/bagel-dpo-20b-v04.IQ3_M.gguf) | IQ3_M | 9.9 |  |
| [GGUF](https://huggingface.co/mradermacher/bagel-dpo-20b-v04-GGUF/resolve/main/bagel-dpo-20b-v04.Q3_K_M.gguf) | Q3_K_M | 10.5 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/bagel-dpo-20b-v04-GGUF/resolve/main/bagel-dpo-20b-v04.Q3_K_L.gguf) | Q3_K_L | 11.3 |  |
| [GGUF](https://huggingface.co/mradermacher/bagel-dpo-20b-v04-GGUF/resolve/main/bagel-dpo-20b-v04.Q4_K_S.gguf) | Q4_K_S | 12.2 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/bagel-dpo-20b-v04-GGUF/resolve/main/bagel-dpo-20b-v04.Q4_K_M.gguf) | Q4_K_M | 12.8 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/bagel-dpo-20b-v04-GGUF/resolve/main/bagel-dpo-20b-v04.Q5_K_S.gguf) | Q5_K_S | 14.5 |  |
| [GGUF](https://huggingface.co/mradermacher/bagel-dpo-20b-v04-GGUF/resolve/main/bagel-dpo-20b-v04.Q5_K_M.gguf) | Q5_K_M | 14.8 |  |
| [GGUF](https://huggingface.co/mradermacher/bagel-dpo-20b-v04-GGUF/resolve/main/bagel-dpo-20b-v04.Q6_K.gguf) | Q6_K | 17.1 | very good quality |
| [GGUF](https://huggingface.co/mradermacher/bagel-dpo-20b-v04-GGUF/resolve/main/bagel-dpo-20b-v04.Q8_0.gguf) | Q8_0 | 21.7 | fast, best quality |
| [GGUF](https://huggingface.co/mradermacher/bagel-dpo-20b-v04-GGUF/resolve/main/bagel-dpo-20b-v04.SOURCE.gguf) | SOURCE | 39.8 | source gguf, only provided when it was hard to come by |


Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png)

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9

## Thanks

I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.

<!-- end -->