Transformers
English
Inference Endpoints
File size: 2,703 Bytes
26ab96d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
---
datasets:
- jondurbin/airoboros-2.2.1
language:
- en
library_name: transformers
license: other
license_link: https://huggingface.co/tiiuae/falcon-180B/raw/main/LICENSE.txt
license_name: falcon-180b-tii-license-1.0
quantized_by: mradermacher
---
## About

static quants of https://huggingface.co/jondurbin/airoboros-180b-2.2.1

<!-- provided-files -->
weighted/imatrix quants are available at https://huggingface.co/mradermacher/airoboros-180b-2.2.1-i1-GGUF
## Usage

If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.

## Provided Quants

(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)

| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [PART 1](https://huggingface.co/mradermacher/airoboros-180b-2.2.1-GGUF/resolve/main/airoboros-180b-2.2.1.Q2_K.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/airoboros-180b-2.2.1-GGUF/resolve/main/airoboros-180b-2.2.1.Q2_K.gguf.part2of2) | Q2_K | 67.8 |  |
| [PART 1](https://huggingface.co/mradermacher/airoboros-180b-2.2.1-GGUF/resolve/main/airoboros-180b-2.2.1.Q3_K_M.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/airoboros-180b-2.2.1-GGUF/resolve/main/airoboros-180b-2.2.1.Q3_K_M.gguf.part2of2) | Q3_K_M | 86.5 | lower quality |
| [PART 1](https://huggingface.co/mradermacher/airoboros-180b-2.2.1-GGUF/resolve/main/airoboros-180b-2.2.1.Q4_K_M.gguf.part1of3) [PART 2](https://huggingface.co/mradermacher/airoboros-180b-2.2.1-GGUF/resolve/main/airoboros-180b-2.2.1.Q4_K_M.gguf.part2of3) [PART 3](https://huggingface.co/mradermacher/airoboros-180b-2.2.1-GGUF/resolve/main/airoboros-180b-2.2.1.Q4_K_M.gguf.part3of3) | Q4_K_M | 109.8 | fast, medium quality |
| [PART 1](https://huggingface.co/mradermacher/airoboros-180b-2.2.1-GGUF/resolve/main/airoboros-180b-2.2.1.Q6_K.gguf.part1of4) [PART 2](https://huggingface.co/mradermacher/airoboros-180b-2.2.1-GGUF/resolve/main/airoboros-180b-2.2.1.Q6_K.gguf.part2of4) [PART 3](https://huggingface.co/mradermacher/airoboros-180b-2.2.1-GGUF/resolve/main/airoboros-180b-2.2.1.Q6_K.gguf.part3of4) [PART 4](https://huggingface.co/mradermacher/airoboros-180b-2.2.1-GGUF/resolve/main/airoboros-180b-2.2.1.Q6_K.gguf.part4of4) | Q6_K | 148.5 | very good quality |


Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png)

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9

<!-- end -->