File size: 1,447 Bytes
15aef6f
 
 
 
 
 
 
 
 
 
 
 
bf5d4c9
15aef6f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
---
base_model: mistralai/Mixtral-8x7B-v0.1
datasets:
- Himitsui/Lewd-Assistant-v1
language:
- en
library_name: transformers
license: cc-by-nc-4.0
quantized_by: mradermacher
---
## About

weighted/imatrix quants of https://huggingface.co/Sao10K/Solstice-Mixtral-v1


<!-- provided-files -->
static quants are available at https://huggingface.co/mradermacher/Solstice-Mixtral-v1-GGUF
## Usage

If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.

## Provided Quants

(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)

| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/Solstice-Mixtral-v1-i1-GGUF/resolve/main/Solstice-Mixtral-v1.i1-Q2_K.gguf) | i1-Q2_K | 17.6 | IQ3_XXS probably better |


Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png)

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9

## Thanks

I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.

<!-- end -->