File size: 1,447 Bytes
15aef6f bf5d4c9 15aef6f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 |
---
base_model: mistralai/Mixtral-8x7B-v0.1
datasets:
- Himitsui/Lewd-Assistant-v1
language:
- en
library_name: transformers
license: cc-by-nc-4.0
quantized_by: mradermacher
---
## About
weighted/imatrix quants of https://huggingface.co/Sao10K/Solstice-Mixtral-v1
<!-- provided-files -->
static quants are available at https://huggingface.co/mradermacher/Solstice-Mixtral-v1-GGUF
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/Solstice-Mixtral-v1-i1-GGUF/resolve/main/Solstice-Mixtral-v1.i1-Q2_K.gguf) | i1-Q2_K | 17.6 | IQ3_XXS probably better |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):
![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png)
And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.
<!-- end -->
|