File size: 4,494 Bytes
2f7d334
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
807576c
 
 
 
 
 
2f7d334
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
---
base_model: MaziyarPanahi/Mistral-7B-Instruct-Aya-101
datasets:
- CohereForAI/aya_dataset
language:
- afr
- amh
- ara
- aze
- bel
- ben
- bul
- cat
- ceb
- ces
- cym
- dan
- deu
- ell
- eng
- epo
- est
- eus
- fin
- fil
- fra
- fry
- gla
- gle
- glg
- guj
- hat
- hau
- heb
- hin
- hun
- hye
- ibo
- ind
- isl
- ita
- jav
- jpn
- kan
- kat
- kaz
- khm
- kir
- kor
- kur
- lao
- lav
- lat
- lit
- ltz
- mal
- mar
- mkd
- mlg
- mlt
- mon
- mri
- msa
- mya
- nep
- nld
- nor
- nso
- nya
- ory
- pan
- pes
- pol
- por
- pus
- ron
- rus
- sin
- slk
- slv
- smo
- sna
- snd
- som
- sot
- spa
- sqi
- srp
- sun
- swa
- swe
- tam
- tel
- tgk
- tha
- tur
- twi
- ukr
- urd
- uzb
- vie
- xho
- yid
- yor
- zho
- zul
library_name: transformers
license: apache-2.0
quantized_by: mradermacher
tags:
- axolotl
- mistral
- 7b
- generated_from_trainer
---
## About

<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type:  -->
<!-- ### tags:  -->
static quants of https://huggingface.co/MaziyarPanahi/Mistral-7B-Instruct-Aya-101

<!-- provided-files -->
weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion.
## Usage

If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.

## Provided Quants

(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)

| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/Mistral-7B-Instruct-Aya-101-GGUF/resolve/main/Mistral-7B-Instruct-Aya-101.Q2_K.gguf) | Q2_K | 2.8 |  |
| [GGUF](https://huggingface.co/mradermacher/Mistral-7B-Instruct-Aya-101-GGUF/resolve/main/Mistral-7B-Instruct-Aya-101.Q3_K_S.gguf) | Q3_K_S | 3.3 |  |
| [GGUF](https://huggingface.co/mradermacher/Mistral-7B-Instruct-Aya-101-GGUF/resolve/main/Mistral-7B-Instruct-Aya-101.Q3_K_M.gguf) | Q3_K_M | 3.6 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/Mistral-7B-Instruct-Aya-101-GGUF/resolve/main/Mistral-7B-Instruct-Aya-101.Q3_K_L.gguf) | Q3_K_L | 3.9 |  |
| [GGUF](https://huggingface.co/mradermacher/Mistral-7B-Instruct-Aya-101-GGUF/resolve/main/Mistral-7B-Instruct-Aya-101.IQ4_XS.gguf) | IQ4_XS | 4.0 |  |
| [GGUF](https://huggingface.co/mradermacher/Mistral-7B-Instruct-Aya-101-GGUF/resolve/main/Mistral-7B-Instruct-Aya-101.Q4_0_4_4.gguf) | Q4_0_4_4 | 4.2 | fast on arm, low quality |
| [GGUF](https://huggingface.co/mradermacher/Mistral-7B-Instruct-Aya-101-GGUF/resolve/main/Mistral-7B-Instruct-Aya-101.Q4_K_S.gguf) | Q4_K_S | 4.2 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Mistral-7B-Instruct-Aya-101-GGUF/resolve/main/Mistral-7B-Instruct-Aya-101.Q4_K_M.gguf) | Q4_K_M | 4.5 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Mistral-7B-Instruct-Aya-101-GGUF/resolve/main/Mistral-7B-Instruct-Aya-101.Q5_K_S.gguf) | Q5_K_S | 5.1 |  |
| [GGUF](https://huggingface.co/mradermacher/Mistral-7B-Instruct-Aya-101-GGUF/resolve/main/Mistral-7B-Instruct-Aya-101.Q5_K_M.gguf) | Q5_K_M | 5.2 |  |
| [GGUF](https://huggingface.co/mradermacher/Mistral-7B-Instruct-Aya-101-GGUF/resolve/main/Mistral-7B-Instruct-Aya-101.Q6_K.gguf) | Q6_K | 6.0 | very good quality |
| [GGUF](https://huggingface.co/mradermacher/Mistral-7B-Instruct-Aya-101-GGUF/resolve/main/Mistral-7B-Instruct-Aya-101.Q8_0.gguf) | Q8_0 | 7.8 | fast, best quality |
| [GGUF](https://huggingface.co/mradermacher/Mistral-7B-Instruct-Aya-101-GGUF/resolve/main/Mistral-7B-Instruct-Aya-101.f16.gguf) | f16 | 14.6 | 16 bpw, overkill |

Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png)

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9

## FAQ / Model Request

See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.

## Thanks

I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.

<!-- end -->