File size: 3,694 Bytes
7b552cb
 
 
 
 
 
 
 
 
 
 
 
 
 
26e62cf
7b552cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f2ee9af
 
fc26202
8c70a0c
f2ee9af
 
7b552cb
f2ee9af
 
8c70a0c
7b552cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
---
exported_from: MarsupialAI/Melusine_103b
language:
- en
library_name: transformers
quantized_by: mradermacher
tags:
- rp
- erp
- chat
- miqu
---
## About

static quants of https://huggingface.co/MarsupialAI/Melusine_103b

<!-- provided-files -->
weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion.
## Usage

If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.

## Provided Quants

(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)

| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/Melusine_103b-GGUF/resolve/main/Melusine_103b.Q2_K.gguf) | Q2_K | 38.3 |  |
| [GGUF](https://huggingface.co/mradermacher/Melusine_103b-GGUF/resolve/main/Melusine_103b.Q3_K_S.gguf) | Q3_K_S | 44.9 |  |
| [GGUF](https://huggingface.co/mradermacher/Melusine_103b-GGUF/resolve/main/Melusine_103b.IQ3_S.gguf) | IQ3_S | 45.0 | beats Q3_K* |
| [PART 1](https://huggingface.co/mradermacher/Melusine_103b-GGUF/resolve/main/Melusine_103b.Q3_K_M.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/Melusine_103b-GGUF/resolve/main/Melusine_103b.Q3_K_M.gguf.part2of2) | Q3_K_M | 50.0 | lower quality |
| [PART 1](https://huggingface.co/mradermacher/Melusine_103b-GGUF/resolve/main/Melusine_103b.Q3_K_L.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/Melusine_103b-GGUF/resolve/main/Melusine_103b.Q3_K_L.gguf.part2of2) | Q3_K_L | 54.5 |  |
| [PART 1](https://huggingface.co/mradermacher/Melusine_103b-GGUF/resolve/main/Melusine_103b.Q4_0.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/Melusine_103b-GGUF/resolve/main/Melusine_103b.Q4_0.gguf.part2of2) | Q4_0 | 58.5 | fast, low quality |
| [PART 1](https://huggingface.co/mradermacher/Melusine_103b-GGUF/resolve/main/Melusine_103b.Q4_K_S.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/Melusine_103b-GGUF/resolve/main/Melusine_103b.Q4_K_S.gguf.part2of2) | Q4_K_S | 59.0 | fast, recommended |
| [PART 1](https://huggingface.co/mradermacher/Melusine_103b-GGUF/resolve/main/Melusine_103b.Q4_K_M.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/Melusine_103b-GGUF/resolve/main/Melusine_103b.Q4_K_M.gguf.part2of2) | Q4_K_M | 62.3 | fast, recommended |
| [PART 1](https://huggingface.co/mradermacher/Melusine_103b-GGUF/resolve/main/Melusine_103b.Q6_K.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/Melusine_103b-GGUF/resolve/main/Melusine_103b.Q6_K.gguf.part2of2) | Q6_K | 85.1 | very good quality |
| [PART 1](https://huggingface.co/mradermacher/Melusine_103b-GGUF/resolve/main/Melusine_103b.Q8_0.gguf.part1of3) [PART 2](https://huggingface.co/mradermacher/Melusine_103b-GGUF/resolve/main/Melusine_103b.Q8_0.gguf.part2of3) [PART 3](https://huggingface.co/mradermacher/Melusine_103b-GGUF/resolve/main/Melusine_103b.Q8_0.gguf.part3of3) | Q8_0 | 110.0 | fast, best quality |


Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png)

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9

## Thanks

I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.

<!-- end -->