File size: 4,092 Bytes
787dc62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
efdbfab
 
 
 
 
 
787dc62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
---
base_model: ValiantLabs/Llama3.2-3B-ShiningValiant2
datasets:
- sequelbox/Celestia
- sequelbox/Spurline
- sequelbox/Supernova
language:
- en
library_name: transformers
license: llama3.2
model_type: llama
quantized_by: mradermacher
tags:
- shining-valiant
- shining-valiant-2
- valiant
- valiant-labs
- llama
- llama-3.2
- llama-3.2-instruct
- llama-3.2-instruct-3b
- llama-3
- llama-3-instruct
- llama-3-instruct-3b
- 3b
- science
- physics
- biology
- chemistry
- compsci
- computer-science
- engineering
- technical
- conversational
- chat
- instruct
---
## About

<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type:  -->
<!-- ### tags:  -->
static quants of https://huggingface.co/ValiantLabs/Llama3.2-3B-ShiningValiant2

<!-- provided-files -->
weighted/imatrix quants are available at https://huggingface.co/mradermacher/Llama3.2-3B-ShiningValiant2-i1-GGUF
## Usage

If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.

## Provided Quants

(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)

| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/Llama3.2-3B-ShiningValiant2-GGUF/resolve/main/Llama3.2-3B-ShiningValiant2.Q2_K.gguf) | Q2_K | 1.5 |  |
| [GGUF](https://huggingface.co/mradermacher/Llama3.2-3B-ShiningValiant2-GGUF/resolve/main/Llama3.2-3B-ShiningValiant2.Q3_K_S.gguf) | Q3_K_S | 1.6 |  |
| [GGUF](https://huggingface.co/mradermacher/Llama3.2-3B-ShiningValiant2-GGUF/resolve/main/Llama3.2-3B-ShiningValiant2.Q3_K_M.gguf) | Q3_K_M | 1.8 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/Llama3.2-3B-ShiningValiant2-GGUF/resolve/main/Llama3.2-3B-ShiningValiant2.Q3_K_L.gguf) | Q3_K_L | 1.9 |  |
| [GGUF](https://huggingface.co/mradermacher/Llama3.2-3B-ShiningValiant2-GGUF/resolve/main/Llama3.2-3B-ShiningValiant2.IQ4_XS.gguf) | IQ4_XS | 1.9 |  |
| [GGUF](https://huggingface.co/mradermacher/Llama3.2-3B-ShiningValiant2-GGUF/resolve/main/Llama3.2-3B-ShiningValiant2.Q4_0_4_4.gguf) | Q4_0_4_4 | 2.0 | fast on arm, low quality |
| [GGUF](https://huggingface.co/mradermacher/Llama3.2-3B-ShiningValiant2-GGUF/resolve/main/Llama3.2-3B-ShiningValiant2.Q4_K_S.gguf) | Q4_K_S | 2.0 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Llama3.2-3B-ShiningValiant2-GGUF/resolve/main/Llama3.2-3B-ShiningValiant2.Q4_K_M.gguf) | Q4_K_M | 2.1 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Llama3.2-3B-ShiningValiant2-GGUF/resolve/main/Llama3.2-3B-ShiningValiant2.Q5_K_S.gguf) | Q5_K_S | 2.4 |  |
| [GGUF](https://huggingface.co/mradermacher/Llama3.2-3B-ShiningValiant2-GGUF/resolve/main/Llama3.2-3B-ShiningValiant2.Q5_K_M.gguf) | Q5_K_M | 2.4 |  |
| [GGUF](https://huggingface.co/mradermacher/Llama3.2-3B-ShiningValiant2-GGUF/resolve/main/Llama3.2-3B-ShiningValiant2.Q6_K.gguf) | Q6_K | 2.7 | very good quality |
| [GGUF](https://huggingface.co/mradermacher/Llama3.2-3B-ShiningValiant2-GGUF/resolve/main/Llama3.2-3B-ShiningValiant2.Q8_0.gguf) | Q8_0 | 3.5 | fast, best quality |
| [GGUF](https://huggingface.co/mradermacher/Llama3.2-3B-ShiningValiant2-GGUF/resolve/main/Llama3.2-3B-ShiningValiant2.f16.gguf) | f16 | 6.5 | 16 bpw, overkill |

Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png)

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9

## FAQ / Model Request

See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.

## Thanks

I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.

<!-- end -->