|
--- |
|
library_name: transformers |
|
base_model: layoutlmv3 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- not-lain/sroie |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: layoutlmv3-finetuned-sroie |
|
results: |
|
- task: |
|
name: Token Classification |
|
type: token-classification |
|
dataset: |
|
name: not-lain/sroie |
|
type: not-lain/sroie |
|
metrics: |
|
- name: Precision |
|
type: precision |
|
value: 0.9515865227347072 |
|
- name: Recall |
|
type: recall |
|
value: 0.9645225464190982 |
|
- name: F1 |
|
type: f1 |
|
value: 0.9580108677753993 |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.9870755974971792 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# layoutlmv3-finetuned-sroie |
|
|
|
This model is a fine-tuned version of [layoutlmv3](https://huggingface.co/layoutlmv3) on the not-lain/sroie dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0596 |
|
- Precision: 0.9516 |
|
- Recall: 0.9645 |
|
- F1: 0.9580 |
|
- Accuracy: 0.9871 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 10 |
|
- eval_batch_size: 10 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- training_steps: 1000 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| No log | 1.5873 | 100 | 0.0548 | 0.9415 | 0.9453 | 0.9434 | 0.9830 | |
|
| No log | 3.1746 | 200 | 0.0531 | 0.9377 | 0.9625 | 0.9499 | 0.9847 | |
|
| No log | 4.7619 | 300 | 0.0550 | 0.9414 | 0.9595 | 0.9504 | 0.9851 | |
|
| No log | 6.3492 | 400 | 0.0560 | 0.9500 | 0.9645 | 0.9572 | 0.9868 | |
|
| 0.0464 | 7.9365 | 500 | 0.0596 | 0.9516 | 0.9645 | 0.9580 | 0.9871 | |
|
| 0.0464 | 9.5238 | 600 | 0.0630 | 0.9502 | 0.9622 | 0.9562 | 0.9865 | |
|
| 0.0464 | 11.1111 | 700 | 0.0707 | 0.9489 | 0.9658 | 0.9573 | 0.9868 | |
|
| 0.0464 | 12.6984 | 800 | 0.0726 | 0.9515 | 0.9629 | 0.9572 | 0.9868 | |
|
| 0.0464 | 14.2857 | 900 | 0.0765 | 0.9510 | 0.9652 | 0.9580 | 0.9871 | |
|
| 0.0048 | 15.8730 | 1000 | 0.0773 | 0.9500 | 0.9645 | 0.9572 | 0.9868 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.44.2 |
|
- Pytorch 2.4.0+cu118 |
|
- Datasets 2.21.0 |
|
- Tokenizers 0.19.1 |
|
|