mp-02's picture
End of training
e3819f5 verified
|
raw
history blame
2.86 kB
metadata
library_name: transformers
base_model: layoutlmv3
tags:
  - generated_from_trainer
datasets:
  - not-lain/sroie
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: layoutlmv3-finetuned-sroie
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: not-lain/sroie
          type: not-lain/sroie
        metrics:
          - name: Precision
            type: precision
            value: 0.9515865227347072
          - name: Recall
            type: recall
            value: 0.9645225464190982
          - name: F1
            type: f1
            value: 0.9580108677753993
          - name: Accuracy
            type: accuracy
            value: 0.9870755974971792

layoutlmv3-finetuned-sroie

This model is a fine-tuned version of layoutlmv3 on the not-lain/sroie dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0596
  • Precision: 0.9516
  • Recall: 0.9645
  • F1: 0.9580
  • Accuracy: 0.9871

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 10
  • eval_batch_size: 10
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 1000

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.5873 100 0.0548 0.9415 0.9453 0.9434 0.9830
No log 3.1746 200 0.0531 0.9377 0.9625 0.9499 0.9847
No log 4.7619 300 0.0550 0.9414 0.9595 0.9504 0.9851
No log 6.3492 400 0.0560 0.9500 0.9645 0.9572 0.9868
0.0464 7.9365 500 0.0596 0.9516 0.9645 0.9580 0.9871
0.0464 9.5238 600 0.0630 0.9502 0.9622 0.9562 0.9865
0.0464 11.1111 700 0.0707 0.9489 0.9658 0.9573 0.9868
0.0464 12.6984 800 0.0726 0.9515 0.9629 0.9572 0.9868
0.0464 14.2857 900 0.0765 0.9510 0.9652 0.9580 0.9871
0.0048 15.8730 1000 0.0773 0.9500 0.9645 0.9572 0.9868

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.0+cu118
  • Datasets 2.21.0
  • Tokenizers 0.19.1