metadata
tags:
- generated_from_trainer
datasets:
- mp-02/funsd
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: layoutlmv3-finetuned-funsd
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: mp-02/funsd
type: mp-02/funsd
metrics:
- name: Precision
type: precision
value: 0.8553875236294896
- name: Recall
type: recall
value: 0.905
- name: F1
type: f1
value: 0.8794946550048591
- name: Accuracy
type: accuracy
value: 0.833371612310519
layoutlmv3-finetuned-funsd
This model is a fine-tuned version of layoutlmv3 on the mp-02/funsd dataset. It achieves the following results on the evaluation set:
- Loss: 0.5784
- Precision: 0.8554
- Recall: 0.905
- F1: 0.8795
- Accuracy: 0.8334
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 400
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 0.66 | 25 | 1.3511 | 0.3301 | 0.3585 | 0.3437 | 0.5721 |
No log | 1.32 | 50 | 0.9059 | 0.6965 | 0.7515 | 0.7229 | 0.7615 |
No log | 1.97 | 75 | 0.7164 | 0.7613 | 0.831 | 0.7946 | 0.7796 |
No log | 2.63 | 100 | 0.6393 | 0.7947 | 0.8575 | 0.8249 | 0.7993 |
No log | 3.29 | 125 | 0.5756 | 0.8138 | 0.87 | 0.8410 | 0.8104 |
No log | 3.95 | 150 | 0.5508 | 0.8197 | 0.884 | 0.8506 | 0.8323 |
No log | 4.61 | 175 | 0.5458 | 0.8325 | 0.8895 | 0.8600 | 0.8328 |
No log | 5.26 | 200 | 0.5740 | 0.8234 | 0.8765 | 0.8491 | 0.8266 |
No log | 5.92 | 225 | 0.5719 | 0.8532 | 0.8895 | 0.8710 | 0.8361 |
No log | 6.58 | 250 | 0.5436 | 0.8439 | 0.9055 | 0.8736 | 0.8264 |
No log | 7.24 | 275 | 0.5714 | 0.8520 | 0.9065 | 0.8784 | 0.8290 |
No log | 7.89 | 300 | 0.5853 | 0.8560 | 0.9035 | 0.8791 | 0.8281 |
No log | 8.55 | 325 | 0.5702 | 0.8578 | 0.905 | 0.8808 | 0.8390 |
No log | 9.21 | 350 | 0.5667 | 0.8552 | 0.901 | 0.8775 | 0.8419 |
No log | 9.87 | 375 | 0.5793 | 0.8552 | 0.9035 | 0.8787 | 0.8338 |
No log | 10.53 | 400 | 0.5784 | 0.8554 | 0.905 | 0.8795 | 0.8334 |
Framework versions
- Transformers 4.12.5
- Pytorch 1.10.0+cu111
- Datasets 2.13.2
- Tokenizers 0.10.1