--- tags: - generated_from_trainer datasets: - mp-02/funsd metrics: - precision - recall - f1 - accuracy model-index: - name: layoutlmv3-finetuned-funsd results: - task: name: Token Classification type: token-classification dataset: name: mp-02/funsd type: mp-02/funsd metrics: - name: Precision type: precision value: 0.8553875236294896 - name: Recall type: recall value: 0.905 - name: F1 type: f1 value: 0.8794946550048591 - name: Accuracy type: accuracy value: 0.833371612310519 --- # layoutlmv3-finetuned-funsd This model is a fine-tuned version of [layoutlmv3](https://huggingface.co/layoutlmv3) on the mp-02/funsd dataset. It achieves the following results on the evaluation set: - Loss: 0.5784 - Precision: 0.8554 - Recall: 0.905 - F1: 0.8795 - Accuracy: 0.8334 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 400 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 0.66 | 25 | 1.3511 | 0.3301 | 0.3585 | 0.3437 | 0.5721 | | No log | 1.32 | 50 | 0.9059 | 0.6965 | 0.7515 | 0.7229 | 0.7615 | | No log | 1.97 | 75 | 0.7164 | 0.7613 | 0.831 | 0.7946 | 0.7796 | | No log | 2.63 | 100 | 0.6393 | 0.7947 | 0.8575 | 0.8249 | 0.7993 | | No log | 3.29 | 125 | 0.5756 | 0.8138 | 0.87 | 0.8410 | 0.8104 | | No log | 3.95 | 150 | 0.5508 | 0.8197 | 0.884 | 0.8506 | 0.8323 | | No log | 4.61 | 175 | 0.5458 | 0.8325 | 0.8895 | 0.8600 | 0.8328 | | No log | 5.26 | 200 | 0.5740 | 0.8234 | 0.8765 | 0.8491 | 0.8266 | | No log | 5.92 | 225 | 0.5719 | 0.8532 | 0.8895 | 0.8710 | 0.8361 | | No log | 6.58 | 250 | 0.5436 | 0.8439 | 0.9055 | 0.8736 | 0.8264 | | No log | 7.24 | 275 | 0.5714 | 0.8520 | 0.9065 | 0.8784 | 0.8290 | | No log | 7.89 | 300 | 0.5853 | 0.8560 | 0.9035 | 0.8791 | 0.8281 | | No log | 8.55 | 325 | 0.5702 | 0.8578 | 0.905 | 0.8808 | 0.8390 | | No log | 9.21 | 350 | 0.5667 | 0.8552 | 0.901 | 0.8775 | 0.8419 | | No log | 9.87 | 375 | 0.5793 | 0.8552 | 0.9035 | 0.8787 | 0.8338 | | No log | 10.53 | 400 | 0.5784 | 0.8554 | 0.905 | 0.8795 | 0.8334 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 2.13.2 - Tokenizers 0.10.1