metadata
library_name: transformers
base_model: layoutlmv3
tags:
- generated_from_trainer
datasets:
- mp-02/cord
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: layoutlmv3-finetuned-cord
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: mp-02/cord
type: mp-02/cord
metrics:
- name: Precision
type: precision
value: 0.9672131147540983
- name: Recall
type: recall
value: 0.9776304888152444
- name: F1
type: f1
value: 0.9723939019365472
- name: Accuracy
type: accuracy
value: 0.9766697163769442
layoutlmv3-finetuned-cord
This model is a fine-tuned version of layoutlmv3 on the mp-02/cord dataset. It achieves the following results on the evaluation set:
- Loss: 0.1292
- Precision: 0.9672
- Recall: 0.9776
- F1: 0.9724
- Accuracy: 0.9767
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 10
- eval_batch_size: 10
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 2500
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 3.125 | 250 | 0.6018 | 0.8218 | 0.8633 | 0.8420 | 0.8577 |
1.0098 | 6.25 | 500 | 0.2695 | 0.9205 | 0.9495 | 0.9347 | 0.9451 |
1.0098 | 9.375 | 750 | 0.1813 | 0.9528 | 0.9693 | 0.9610 | 0.9639 |
0.1993 | 12.5 | 1000 | 0.1557 | 0.9616 | 0.9743 | 0.9679 | 0.9739 |
0.1993 | 15.625 | 1250 | 0.1749 | 0.9608 | 0.9743 | 0.9675 | 0.9703 |
0.0787 | 18.75 | 1500 | 0.1482 | 0.9616 | 0.9743 | 0.9679 | 0.9730 |
0.0787 | 21.875 | 1750 | 0.1288 | 0.9640 | 0.9751 | 0.9695 | 0.9762 |
0.0433 | 25.0 | 2000 | 0.1292 | 0.9672 | 0.9776 | 0.9724 | 0.9767 |
0.0433 | 28.125 | 2250 | 0.1372 | 0.9623 | 0.9735 | 0.9679 | 0.9735 |
0.031 | 31.25 | 2500 | 0.1408 | 0.9631 | 0.9743 | 0.9687 | 0.9730 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.4.0+cu118
- Datasets 2.21.0
- Tokenizers 0.19.1