File size: 7,816 Bytes
d8cfc27 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 |
'''MobileNetV3 in PyTorch.
See the paper "Inverted Residuals and Linear Bottlenecks:
Mobile Networks for Classification, Detection and Segmentation" for more details.
'''
import torch.nn as nn
import torch.nn.functional as F
from torch.nn import init
class hswish(nn.Module):
def forward(self, x):
out = x * F.relu6(x + 3, inplace=True) / 6
return out
class hsigmoid(nn.Module):
def forward(self, x):
out = F.relu6(x + 3, inplace=True) / 6
return out
class SeModule(nn.Module):
def __init__(self, in_size, reduction=4):
super(SeModule, self).__init__()
expand_size = max(in_size // reduction, 8)
self.se = nn.Sequential(
nn.AdaptiveAvgPool2d(1),
nn.Conv2d(in_size, expand_size, kernel_size=1, bias=False),
nn.BatchNorm2d(expand_size),
nn.ReLU(inplace=True),
nn.Conv2d(expand_size, in_size, kernel_size=1, bias=False),
nn.Hardsigmoid()
)
def forward(self, x):
return x * self.se(x)
class Block(nn.Module):
'''expand + depthwise + pointwise'''
def __init__(self, kernel_size, in_size, expand_size, out_size, act, se, stride):
super(Block, self).__init__()
self.stride = stride
self.conv1 = nn.Conv2d(in_size, expand_size, kernel_size=1, bias=False)
self.bn1 = nn.BatchNorm2d(expand_size)
self.act1 = act(inplace=True)
self.conv2 = nn.Conv2d(expand_size, expand_size, kernel_size=kernel_size, stride=stride, padding=kernel_size//2, groups=expand_size, bias=False)
self.bn2 = nn.BatchNorm2d(expand_size)
self.act2 = act(inplace=True)
self.se = SeModule(expand_size) if se else nn.Identity()
self.conv3 = nn.Conv2d(expand_size, out_size, kernel_size=1, bias=False)
self.bn3 = nn.BatchNorm2d(out_size)
self.act3 = act(inplace=True)
self.skip = None
if stride == 1 and in_size != out_size:
self.skip = nn.Sequential(
nn.Conv2d(in_size, out_size, kernel_size=1, bias=False),
nn.BatchNorm2d(out_size)
)
if stride == 2 and in_size != out_size:
self.skip = nn.Sequential(
nn.Conv2d(in_channels=in_size, out_channels=in_size, kernel_size=3, groups=in_size, stride=2, padding=1, bias=False),
nn.BatchNorm2d(in_size),
nn.Conv2d(in_size, out_size, kernel_size=1, bias=True),
nn.BatchNorm2d(out_size)
)
if stride == 2 and in_size == out_size:
self.skip = nn.Sequential(
nn.Conv2d(in_channels=in_size, out_channels=out_size, kernel_size=3, groups=in_size, stride=2, padding=1, bias=False),
nn.BatchNorm2d(out_size)
)
def forward(self, x):
skip = x
out = self.act1(self.bn1(self.conv1(x)))
out = self.act2(self.bn2(self.conv2(out)))
out = self.se(out)
out = self.bn3(self.conv3(out))
if self.skip is not None:
skip = self.skip(skip)
return self.act3(out + skip)
class MobileNetV3_Small(nn.Module):
def __init__(self, num_classes=1000, act=nn.Hardswish):
super(MobileNetV3_Small, self).__init__()
self.conv1 = nn.Conv2d(3, 16, kernel_size=3, stride=2, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(16)
self.hs1 = act(inplace=True)
self.bneck = nn.Sequential(
Block(3, 16, 16, 16, nn.ReLU, True, 2),
Block(3, 16, 72, 24, nn.ReLU, False, 2),
Block(3, 24, 88, 24, nn.ReLU, False, 1),
Block(5, 24, 96, 40, act, True, 2),
Block(5, 40, 240, 40, act, True, 1),
Block(5, 40, 240, 40, act, True, 1),
Block(5, 40, 120, 48, act, True, 1),
Block(5, 48, 144, 48, act, True, 1),
Block(5, 48, 288, 96, act, True, 2),
Block(5, 96, 576, 96, act, True, 1),
Block(5, 96, 576, 96, act, True, 1),
)
self.conv2 = nn.Conv2d(96, 576, kernel_size=1, stride=1, padding=0, bias=False)
self.bn2 = nn.BatchNorm2d(576)
self.hs2 = act(inplace=True)
self.gap = nn.AdaptiveAvgPool2d(1)
self.linear3 = nn.Linear(576, 1280, bias=False)
self.bn3 = nn.BatchNorm1d(1280)
self.hs3 = act(inplace=True)
self.drop = nn.Dropout(0.2)
self.linear4 = nn.Linear(1280, num_classes)
self.init_params()
def init_params(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
init.kaiming_normal_(m.weight, mode='fan_out')
if m.bias is not None:
init.constant_(m.bias, 0)
elif isinstance(m, nn.BatchNorm2d):
init.constant_(m.weight, 1)
init.constant_(m.bias, 0)
elif isinstance(m, nn.Linear):
init.normal_(m.weight, std=0.001)
if m.bias is not None:
init.constant_(m.bias, 0)
def forward(self, x):
out = self.hs1(self.bn1(self.conv1(x)))
out = self.bneck(out)
out = self.hs2(self.bn2(self.conv2(out)))
out = self.gap(out).flatten(1)
out = self.drop(self.hs3(self.bn3(self.linear3(out))))
return self.linear4(out)
class MobileNetV3_Large(nn.Module):
def __init__(self, num_classes=1000, act=nn.Hardswish):
super(MobileNetV3_Large, self).__init__()
self.conv1 = nn.Conv2d(3, 16, kernel_size=3, stride=2, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(16)
self.hs1 = act(inplace=True)
self.bneck = nn.Sequential(
Block(3, 16, 16, 16, nn.ReLU, False, 1),
Block(3, 16, 64, 24, nn.ReLU, False, 2),
Block(3, 24, 72, 24, nn.ReLU, False, 1),
Block(5, 24, 72, 40, nn.ReLU, True, 2),
Block(5, 40, 120, 40, nn.ReLU, True, 1),
Block(5, 40, 120, 40, nn.ReLU, True, 1),
Block(3, 40, 240, 80, act, False, 2),
Block(3, 80, 200, 80, act, False, 1),
Block(3, 80, 184, 80, act, False, 1),
Block(3, 80, 184, 80, act, False, 1),
Block(3, 80, 480, 112, act, True, 1),
Block(3, 112, 672, 112, act, True, 1),
Block(5, 112, 672, 160, act, True, 2),
Block(5, 160, 672, 160, act, True, 1),
Block(5, 160, 960, 160, act, True, 1),
)
self.conv2 = nn.Conv2d(160, 960, kernel_size=1, stride=1, padding=0, bias=False)
self.bn2 = nn.BatchNorm2d(960)
self.hs2 = act(inplace=True)
self.gap = nn.AdaptiveAvgPool2d(1)
self.linear3 = nn.Linear(960, 1280, bias=False)
self.bn3 = nn.BatchNorm1d(1280)
self.hs3 = act(inplace=True)
self.drop = nn.Dropout(0.2)
self.linear4 = nn.Linear(1280, num_classes)
self.init_params()
def init_params(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
init.kaiming_normal_(m.weight, mode='fan_out')
if m.bias is not None:
init.constant_(m.bias, 0)
elif isinstance(m, nn.BatchNorm2d):
init.constant_(m.weight, 1)
init.constant_(m.bias, 0)
elif isinstance(m, nn.Linear):
init.normal_(m.weight, std=0.001)
if m.bias is not None:
init.constant_(m.bias, 0)
def forward(self, x):
out = self.hs1(self.bn1(self.conv1(x)))
out = self.bneck(out)
out = self.hs2(self.bn2(self.conv2(out)))
out = self.gap(out).flatten(1)
out = self.drop(self.hs3(self.bn3(self.linear3(out))))
return self.linear4(out)
|