mouadenna's picture
End of training
8f194c5 verified
metadata
license: other
base_model: nvidia/segformer-b1-finetuned-ade-512-512
tags:
  - vision
  - image-segmentation
  - generated_from_trainer
metrics:
  - precision
model-index:
  - name: segformer_b1_finetuned_segment_pv_p100_32batch
    results: []

Visualize in Weights & Biases

segformer_b1_finetuned_segment_pv_p100_32batch

This model is a fine-tuned version of nvidia/segformer-b1-finetuned-ade-512-512 on the mouadenna/satellite_PV_dataset_train_test_v1 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0059
  • Mean Iou: 0.8651
  • Precision: 0.9226

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.00032
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 40
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Mean Iou Precision
0.4433 1.0 115 0.1593 0.5991 0.6512
0.0857 2.0 230 0.0270 0.7731 0.8493
0.0201 3.0 345 0.0116 0.8058 0.8974
0.0108 4.0 460 0.0084 0.8146 0.8758
0.0077 5.0 575 0.0070 0.8267 0.8871
0.0059 6.0 690 0.0072 0.8241 0.9128
0.0051 7.0 805 0.0058 0.8433 0.9197
0.0044 8.0 920 0.0059 0.8466 0.8994
0.0042 9.0 1035 0.0055 0.8474 0.9075
0.0037 10.0 1150 0.0054 0.8576 0.9100
0.0033 11.0 1265 0.0056 0.8555 0.9254
0.0032 12.0 1380 0.0059 0.8455 0.8795
0.0032 13.0 1495 0.0055 0.8600 0.9226
0.0033 14.0 1610 0.0057 0.8558 0.9234
0.0029 15.0 1725 0.0063 0.8533 0.9211
0.003 16.0 1840 0.0072 0.8498 0.9261
0.0035 17.0 1955 0.0102 0.7815 0.9482
0.0033 18.0 2070 0.0244 0.5662 0.9688
0.0028 19.0 2185 0.0256 0.5643 0.9675
0.0027 20.0 2300 0.0078 0.8405 0.9370
0.0026 21.0 2415 0.0241 0.6404 0.9706
0.0024 22.0 2530 0.0492 0.3084 0.9702
0.0025 23.0 2645 0.1065 0.0107 0.9109
0.0024 24.0 2760 0.0958 0.0374 0.8273
0.003 25.0 2875 0.0571 0.1779 0.9912
0.0026 26.0 2990 0.0968 0.0140 0.9839
0.0023 27.0 3105 0.0454 0.2833 0.9702
0.0022 28.0 3220 0.0519 0.2828 0.9658
0.0021 29.0 3335 0.0446 0.3157 0.9698
0.002 30.0 3450 0.0415 0.3630 0.9702
0.002 31.0 3565 0.0308 0.4995 0.9737
0.002 32.0 3680 0.0227 0.6260 0.9700
0.0019 33.0 3795 0.0131 0.7631 0.9631
0.0019 34.0 3910 0.0102 0.8131 0.9541
0.0021 35.0 4025 0.0058 0.8450 0.9449
0.0018 36.0 4140 0.0073 0.8556 0.9326
0.0019 37.0 4255 0.0060 0.8601 0.9339
0.0018 38.0 4370 0.0060 0.8654 0.9244
0.0019 39.0 4485 0.0061 0.8636 0.9248
0.0017 40.0 4600 0.0059 0.8651 0.9226

Framework versions

  • Transformers 4.42.3
  • Pytorch 2.1.2
  • Datasets 2.20.0
  • Tokenizers 0.19.1