End of training
Browse files- README.md +102 -196
- config.json +78 -0
- model.safetensors +3 -0
- runs/Aug02_00-21-22_c65165ea633d/events.out.tfevents.1722558104.c65165ea633d.24.0 +3 -0
- training_args.bin +3 -0
README.md
CHANGED
@@ -1,199 +1,105 @@
|
|
1 |
---
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
---
|
5 |
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
-
|
96 |
-
|
97 |
-
#### Speeds, Sizes, Times [optional]
|
98 |
-
|
99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
-
|
101 |
-
[More Information Needed]
|
102 |
-
|
103 |
-
## Evaluation
|
104 |
-
|
105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
|
|
1 |
---
|
2 |
+
license: other
|
3 |
+
base_model: nvidia/segformer-b1-finetuned-ade-512-512
|
4 |
+
tags:
|
5 |
+
- vision
|
6 |
+
- image-segmentation
|
7 |
+
- generated_from_trainer
|
8 |
+
metrics:
|
9 |
+
- precision
|
10 |
+
model-index:
|
11 |
+
- name: segformer_b1_finetuned_segment_pv_p100_32batch
|
12 |
+
results: []
|
13 |
---
|
14 |
|
15 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
16 |
+
should probably proofread and complete it, then remove this comment. -->
|
17 |
+
|
18 |
+
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/mouadn773/segformer-pv-4batches/runs/l37rzbqs)
|
19 |
+
# segformer_b1_finetuned_segment_pv_p100_32batch
|
20 |
+
|
21 |
+
This model is a fine-tuned version of [nvidia/segformer-b1-finetuned-ade-512-512](https://huggingface.co/nvidia/segformer-b1-finetuned-ade-512-512) on the mouadenna/satellite_PV_dataset_train_test_v1 dataset.
|
22 |
+
It achieves the following results on the evaluation set:
|
23 |
+
- Loss: 0.0059
|
24 |
+
- Mean Iou: 0.8651
|
25 |
+
- Precision: 0.9226
|
26 |
+
|
27 |
+
## Model description
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Intended uses & limitations
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training and evaluation data
|
36 |
+
|
37 |
+
More information needed
|
38 |
+
|
39 |
+
## Training procedure
|
40 |
+
|
41 |
+
### Training hyperparameters
|
42 |
+
|
43 |
+
The following hyperparameters were used during training:
|
44 |
+
- learning_rate: 0.00032
|
45 |
+
- train_batch_size: 32
|
46 |
+
- eval_batch_size: 32
|
47 |
+
- seed: 42
|
48 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
49 |
+
- lr_scheduler_type: linear
|
50 |
+
- lr_scheduler_warmup_ratio: 0.1
|
51 |
+
- num_epochs: 40
|
52 |
+
- mixed_precision_training: Native AMP
|
53 |
+
|
54 |
+
### Training results
|
55 |
+
|
56 |
+
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Precision |
|
57 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|
|
58 |
+
| 0.4433 | 1.0 | 115 | 0.1593 | 0.5991 | 0.6512 |
|
59 |
+
| 0.0857 | 2.0 | 230 | 0.0270 | 0.7731 | 0.8493 |
|
60 |
+
| 0.0201 | 3.0 | 345 | 0.0116 | 0.8058 | 0.8974 |
|
61 |
+
| 0.0108 | 4.0 | 460 | 0.0084 | 0.8146 | 0.8758 |
|
62 |
+
| 0.0077 | 5.0 | 575 | 0.0070 | 0.8267 | 0.8871 |
|
63 |
+
| 0.0059 | 6.0 | 690 | 0.0072 | 0.8241 | 0.9128 |
|
64 |
+
| 0.0051 | 7.0 | 805 | 0.0058 | 0.8433 | 0.9197 |
|
65 |
+
| 0.0044 | 8.0 | 920 | 0.0059 | 0.8466 | 0.8994 |
|
66 |
+
| 0.0042 | 9.0 | 1035 | 0.0055 | 0.8474 | 0.9075 |
|
67 |
+
| 0.0037 | 10.0 | 1150 | 0.0054 | 0.8576 | 0.9100 |
|
68 |
+
| 0.0033 | 11.0 | 1265 | 0.0056 | 0.8555 | 0.9254 |
|
69 |
+
| 0.0032 | 12.0 | 1380 | 0.0059 | 0.8455 | 0.8795 |
|
70 |
+
| 0.0032 | 13.0 | 1495 | 0.0055 | 0.8600 | 0.9226 |
|
71 |
+
| 0.0033 | 14.0 | 1610 | 0.0057 | 0.8558 | 0.9234 |
|
72 |
+
| 0.0029 | 15.0 | 1725 | 0.0063 | 0.8533 | 0.9211 |
|
73 |
+
| 0.003 | 16.0 | 1840 | 0.0072 | 0.8498 | 0.9261 |
|
74 |
+
| 0.0035 | 17.0 | 1955 | 0.0102 | 0.7815 | 0.9482 |
|
75 |
+
| 0.0033 | 18.0 | 2070 | 0.0244 | 0.5662 | 0.9688 |
|
76 |
+
| 0.0028 | 19.0 | 2185 | 0.0256 | 0.5643 | 0.9675 |
|
77 |
+
| 0.0027 | 20.0 | 2300 | 0.0078 | 0.8405 | 0.9370 |
|
78 |
+
| 0.0026 | 21.0 | 2415 | 0.0241 | 0.6404 | 0.9706 |
|
79 |
+
| 0.0024 | 22.0 | 2530 | 0.0492 | 0.3084 | 0.9702 |
|
80 |
+
| 0.0025 | 23.0 | 2645 | 0.1065 | 0.0107 | 0.9109 |
|
81 |
+
| 0.0024 | 24.0 | 2760 | 0.0958 | 0.0374 | 0.8273 |
|
82 |
+
| 0.003 | 25.0 | 2875 | 0.0571 | 0.1779 | 0.9912 |
|
83 |
+
| 0.0026 | 26.0 | 2990 | 0.0968 | 0.0140 | 0.9839 |
|
84 |
+
| 0.0023 | 27.0 | 3105 | 0.0454 | 0.2833 | 0.9702 |
|
85 |
+
| 0.0022 | 28.0 | 3220 | 0.0519 | 0.2828 | 0.9658 |
|
86 |
+
| 0.0021 | 29.0 | 3335 | 0.0446 | 0.3157 | 0.9698 |
|
87 |
+
| 0.002 | 30.0 | 3450 | 0.0415 | 0.3630 | 0.9702 |
|
88 |
+
| 0.002 | 31.0 | 3565 | 0.0308 | 0.4995 | 0.9737 |
|
89 |
+
| 0.002 | 32.0 | 3680 | 0.0227 | 0.6260 | 0.9700 |
|
90 |
+
| 0.0019 | 33.0 | 3795 | 0.0131 | 0.7631 | 0.9631 |
|
91 |
+
| 0.0019 | 34.0 | 3910 | 0.0102 | 0.8131 | 0.9541 |
|
92 |
+
| 0.0021 | 35.0 | 4025 | 0.0058 | 0.8450 | 0.9449 |
|
93 |
+
| 0.0018 | 36.0 | 4140 | 0.0073 | 0.8556 | 0.9326 |
|
94 |
+
| 0.0019 | 37.0 | 4255 | 0.0060 | 0.8601 | 0.9339 |
|
95 |
+
| 0.0018 | 38.0 | 4370 | 0.0060 | 0.8654 | 0.9244 |
|
96 |
+
| 0.0019 | 39.0 | 4485 | 0.0061 | 0.8636 | 0.9248 |
|
97 |
+
| 0.0017 | 40.0 | 4600 | 0.0059 | 0.8651 | 0.9226 |
|
98 |
+
|
99 |
+
|
100 |
+
### Framework versions
|
101 |
+
|
102 |
+
- Transformers 4.42.3
|
103 |
+
- Pytorch 2.1.2
|
104 |
+
- Datasets 2.20.0
|
105 |
+
- Tokenizers 0.19.1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
config.json
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "nvidia/segformer-b1-finetuned-ade-512-512",
|
3 |
+
"architectures": [
|
4 |
+
"SegformerForSemanticSegmentation"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.0,
|
7 |
+
"classifier_dropout_prob": 0.1,
|
8 |
+
"decoder_hidden_size": 256,
|
9 |
+
"depths": [
|
10 |
+
2,
|
11 |
+
2,
|
12 |
+
2,
|
13 |
+
2
|
14 |
+
],
|
15 |
+
"downsampling_rates": [
|
16 |
+
1,
|
17 |
+
4,
|
18 |
+
8,
|
19 |
+
16
|
20 |
+
],
|
21 |
+
"drop_path_rate": 0.1,
|
22 |
+
"hidden_act": "gelu",
|
23 |
+
"hidden_dropout_prob": 0.0,
|
24 |
+
"hidden_sizes": [
|
25 |
+
64,
|
26 |
+
128,
|
27 |
+
320,
|
28 |
+
512
|
29 |
+
],
|
30 |
+
"id2label": {
|
31 |
+
"0": "unlabeled",
|
32 |
+
"1": "PV"
|
33 |
+
},
|
34 |
+
"image_size": 224,
|
35 |
+
"initializer_range": 0.02,
|
36 |
+
"label2id": {
|
37 |
+
"PV": 1,
|
38 |
+
"unlabeled": 0
|
39 |
+
},
|
40 |
+
"layer_norm_eps": 1e-06,
|
41 |
+
"mlp_ratios": [
|
42 |
+
4,
|
43 |
+
4,
|
44 |
+
4,
|
45 |
+
4
|
46 |
+
],
|
47 |
+
"model_type": "segformer",
|
48 |
+
"num_attention_heads": [
|
49 |
+
1,
|
50 |
+
2,
|
51 |
+
5,
|
52 |
+
8
|
53 |
+
],
|
54 |
+
"num_channels": 3,
|
55 |
+
"num_encoder_blocks": 4,
|
56 |
+
"patch_sizes": [
|
57 |
+
7,
|
58 |
+
3,
|
59 |
+
3,
|
60 |
+
3
|
61 |
+
],
|
62 |
+
"reshape_last_stage": true,
|
63 |
+
"semantic_loss_ignore_index": 255,
|
64 |
+
"sr_ratios": [
|
65 |
+
8,
|
66 |
+
4,
|
67 |
+
2,
|
68 |
+
1
|
69 |
+
],
|
70 |
+
"strides": [
|
71 |
+
4,
|
72 |
+
2,
|
73 |
+
2,
|
74 |
+
2
|
75 |
+
],
|
76 |
+
"torch_dtype": "float32",
|
77 |
+
"transformers_version": "4.42.3"
|
78 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a3e09e1948e74d1cbd4dc78c7d9c9ddf8334af74aa19398a73f4ff160f56d5d9
|
3 |
+
size 54737376
|
runs/Aug02_00-21-22_c65165ea633d/events.out.tfevents.1722558104.c65165ea633d.24.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:70dabbd6e70f585254b84578b67040890d11483fee9dbc982f581f77bef65090
|
3 |
+
size 29285
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0cc59d2b0103c480aab787fb03aff65bbffae4bed0a08bdb61685633e940ee68
|
3 |
+
size 5176
|