mouadenna's picture
End of training
35a7e6a verified
metadata
license: other
base_model: nvidia/segformer-b1-finetuned-ade-512-512
tags:
  - vision
  - image-segmentation
  - generated_from_trainer
metrics:
  - precision
model-index:
  - name: segformer-b1-finetuned-segments-pv_v1_normalized_t4_4batch_augx3
    results: []

Visualize in Weights & Biases

segformer-b1-finetuned-segments-pv_v1_normalized_t4_4batch_augx3

This model is a fine-tuned version of nvidia/segformer-b1-finetuned-ade-512-512 on the mouadenna/satellite_PV_dataset_train_test_v1 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0111
  • Mean Iou: 0.8679
  • Precision: 0.9181

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0004
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 40
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Mean Iou Precision
0.0086 0.9978 343 0.0064 0.8154 0.9105
0.0031 1.9985 687 0.0058 0.8290 0.9324
0.0059 2.9993 1031 0.0061 0.8077 0.9352
0.0031 4.0 1375 0.0057 0.8347 0.9182
0.0043 4.9978 1718 0.0059 0.8275 0.8747
0.0034 5.9985 2062 0.0054 0.8499 0.8922
0.0035 6.9993 2406 0.0055 0.8508 0.9072
0.0037 8.0 2750 0.0055 0.8466 0.9201
0.0028 8.9978 3093 0.0054 0.8590 0.9139
0.0031 9.9985 3437 0.0055 0.8562 0.9135
0.002 10.9993 3781 0.0054 0.8619 0.9175
0.0019 12.0 4125 0.0056 0.8649 0.9131
0.0023 12.9978 4468 0.0061 0.8632 0.9195
0.0028 13.9985 4812 0.0061 0.8553 0.9174
0.0041 14.9993 5156 0.0072 0.8573 0.9172
0.002 16.0 5500 0.0063 0.8643 0.9136
0.0019 16.9978 5843 0.0068 0.8637 0.9185
0.0019 17.9985 6187 0.0073 0.8598 0.9123
0.0015 18.9993 6531 0.0070 0.8620 0.9108
0.0019 20.0 6875 0.0073 0.8602 0.9163
0.0017 20.9978 7218 0.0071 0.8669 0.9229
0.0014 21.9985 7562 0.0081 0.8633 0.9198
0.0027 22.9993 7906 0.0089 0.8573 0.9138
0.0017 24.0 8250 0.0086 0.8570 0.9114
0.0011 24.9978 8593 0.0087 0.8635 0.9152
0.0013 25.9985 8937 0.0100 0.8583 0.9203
0.0012 26.9993 9281 0.0085 0.8651 0.9113
0.0015 28.0 9625 0.0091 0.8697 0.9179
0.0011 28.9978 9968 0.0091 0.8684 0.9204
0.0012 29.9985 10312 0.0099 0.8658 0.9152
0.001 30.9993 10656 0.0098 0.8663 0.9170
0.0011 32.0 11000 0.0100 0.8680 0.9174
0.0008 32.9978 11343 0.0102 0.8675 0.9181
0.0009 33.9985 11687 0.0107 0.8669 0.9180
0.0011 34.9993 12031 0.0107 0.8681 0.9214
0.001 36.0 12375 0.0113 0.8677 0.9166
0.001 36.9978 12718 0.0115 0.8669 0.9179
0.001 37.9985 13062 0.0109 0.8694 0.9206
0.0008 38.9993 13406 0.0112 0.8681 0.9175
0.0009 39.9127 13720 0.0111 0.8679 0.9181

Framework versions

  • Transformers 4.42.3
  • Pytorch 2.1.2
  • Datasets 2.20.0
  • Tokenizers 0.19.1