--- license: other base_model: nvidia/segformer-b1-finetuned-ade-512-512 tags: - vision - image-segmentation - generated_from_trainer metrics: - precision model-index: - name: segformer-b1-finetuned-segments-pv_v1_normalized_t4_4batch_augx3 results: [] --- [Visualize in Weights & Biases](https://wandb.ai/mouadn773/huggingface/runs/1oi9s8vu) # segformer-b1-finetuned-segments-pv_v1_normalized_t4_4batch_augx3 This model is a fine-tuned version of [nvidia/segformer-b1-finetuned-ade-512-512](https://huggingface.co/nvidia/segformer-b1-finetuned-ade-512-512) on the mouadenna/satellite_PV_dataset_train_test_v1 dataset. It achieves the following results on the evaluation set: - Loss: 0.0111 - Mean Iou: 0.8679 - Precision: 0.9181 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0004 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 40 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Precision | |:-------------:|:-------:|:-----:|:---------------:|:--------:|:---------:| | 0.0086 | 0.9978 | 343 | 0.0064 | 0.8154 | 0.9105 | | 0.0031 | 1.9985 | 687 | 0.0058 | 0.8290 | 0.9324 | | 0.0059 | 2.9993 | 1031 | 0.0061 | 0.8077 | 0.9352 | | 0.0031 | 4.0 | 1375 | 0.0057 | 0.8347 | 0.9182 | | 0.0043 | 4.9978 | 1718 | 0.0059 | 0.8275 | 0.8747 | | 0.0034 | 5.9985 | 2062 | 0.0054 | 0.8499 | 0.8922 | | 0.0035 | 6.9993 | 2406 | 0.0055 | 0.8508 | 0.9072 | | 0.0037 | 8.0 | 2750 | 0.0055 | 0.8466 | 0.9201 | | 0.0028 | 8.9978 | 3093 | 0.0054 | 0.8590 | 0.9139 | | 0.0031 | 9.9985 | 3437 | 0.0055 | 0.8562 | 0.9135 | | 0.002 | 10.9993 | 3781 | 0.0054 | 0.8619 | 0.9175 | | 0.0019 | 12.0 | 4125 | 0.0056 | 0.8649 | 0.9131 | | 0.0023 | 12.9978 | 4468 | 0.0061 | 0.8632 | 0.9195 | | 0.0028 | 13.9985 | 4812 | 0.0061 | 0.8553 | 0.9174 | | 0.0041 | 14.9993 | 5156 | 0.0072 | 0.8573 | 0.9172 | | 0.002 | 16.0 | 5500 | 0.0063 | 0.8643 | 0.9136 | | 0.0019 | 16.9978 | 5843 | 0.0068 | 0.8637 | 0.9185 | | 0.0019 | 17.9985 | 6187 | 0.0073 | 0.8598 | 0.9123 | | 0.0015 | 18.9993 | 6531 | 0.0070 | 0.8620 | 0.9108 | | 0.0019 | 20.0 | 6875 | 0.0073 | 0.8602 | 0.9163 | | 0.0017 | 20.9978 | 7218 | 0.0071 | 0.8669 | 0.9229 | | 0.0014 | 21.9985 | 7562 | 0.0081 | 0.8633 | 0.9198 | | 0.0027 | 22.9993 | 7906 | 0.0089 | 0.8573 | 0.9138 | | 0.0017 | 24.0 | 8250 | 0.0086 | 0.8570 | 0.9114 | | 0.0011 | 24.9978 | 8593 | 0.0087 | 0.8635 | 0.9152 | | 0.0013 | 25.9985 | 8937 | 0.0100 | 0.8583 | 0.9203 | | 0.0012 | 26.9993 | 9281 | 0.0085 | 0.8651 | 0.9113 | | 0.0015 | 28.0 | 9625 | 0.0091 | 0.8697 | 0.9179 | | 0.0011 | 28.9978 | 9968 | 0.0091 | 0.8684 | 0.9204 | | 0.0012 | 29.9985 | 10312 | 0.0099 | 0.8658 | 0.9152 | | 0.001 | 30.9993 | 10656 | 0.0098 | 0.8663 | 0.9170 | | 0.0011 | 32.0 | 11000 | 0.0100 | 0.8680 | 0.9174 | | 0.0008 | 32.9978 | 11343 | 0.0102 | 0.8675 | 0.9181 | | 0.0009 | 33.9985 | 11687 | 0.0107 | 0.8669 | 0.9180 | | 0.0011 | 34.9993 | 12031 | 0.0107 | 0.8681 | 0.9214 | | 0.001 | 36.0 | 12375 | 0.0113 | 0.8677 | 0.9166 | | 0.001 | 36.9978 | 12718 | 0.0115 | 0.8669 | 0.9179 | | 0.001 | 37.9985 | 13062 | 0.0109 | 0.8694 | 0.9206 | | 0.0008 | 38.9993 | 13406 | 0.0112 | 0.8681 | 0.9175 | | 0.0009 | 39.9127 | 13720 | 0.0111 | 0.8679 | 0.9181 | ### Framework versions - Transformers 4.42.3 - Pytorch 2.1.2 - Datasets 2.20.0 - Tokenizers 0.19.1