File size: 4,991 Bytes
ec3b64d 5b027b3 ec3b64d 5b027b3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 |
---
license: other
base_model: nvidia/segformer-b1-finetuned-ade-512-512
tags:
- vision
- image-segmentation
- generated_from_trainer
metrics:
- precision
model-index:
- name: segformer-b1-finetuned-segments-pv_v1_3x_normalized_p100_4batch
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/mouadn773/huggingface/runs/ydmwnhgs)
# segformer-b1-finetuned-segments-pv_v1_3x_normalized_p100_4batch
This model is a fine-tuned version of [nvidia/segformer-b1-finetuned-ade-512-512](https://huggingface.co/nvidia/segformer-b1-finetuned-ade-512-512) on the mouadenna/satellite_PV_dataset_train_test_v1 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0087
- Mean Iou: 0.8602
- Precision: 0.9152
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0004
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.001
- num_epochs: 40
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Precision |
|:-------------:|:-------:|:-----:|:---------------:|:--------:|:---------:|
| 0.0073 | 0.9993 | 687 | 0.0072 | 0.7997 | 0.8395 |
| 0.0052 | 2.0 | 1375 | 0.0069 | 0.8039 | 0.8906 |
| 0.0051 | 2.9993 | 2062 | 0.0060 | 0.8301 | 0.8951 |
| 0.0048 | 4.0 | 2750 | 0.0057 | 0.8223 | 0.9070 |
| 0.0039 | 4.9993 | 3437 | 0.0054 | 0.8433 | 0.9104 |
| 0.0042 | 6.0 | 4125 | 0.0054 | 0.8414 | 0.8779 |
| 0.0031 | 6.9993 | 4812 | 0.0052 | 0.8453 | 0.8852 |
| 0.0034 | 8.0 | 5500 | 0.0051 | 0.8526 | 0.9146 |
| 0.0036 | 8.9993 | 6187 | 0.0059 | 0.8319 | 0.8884 |
| 0.0027 | 10.0 | 6875 | 0.0058 | 0.8453 | 0.8990 |
| 0.0028 | 10.9993 | 7562 | 0.0052 | 0.8552 | 0.9152 |
| 0.0027 | 12.0 | 8250 | 0.0062 | 0.8459 | 0.9038 |
| 0.0032 | 12.9993 | 8937 | 0.0056 | 0.8506 | 0.9163 |
| 0.0024 | 14.0 | 9625 | 0.0062 | 0.8529 | 0.9189 |
| 0.0035 | 14.9993 | 10312 | 0.0058 | 0.8464 | 0.9102 |
| 0.0024 | 16.0 | 11000 | 0.0059 | 0.8575 | 0.9126 |
| 0.0023 | 16.9993 | 11687 | 0.0057 | 0.8527 | 0.9201 |
| 0.0024 | 18.0 | 12375 | 0.0060 | 0.8573 | 0.9177 |
| 0.0028 | 18.9993 | 13062 | 0.0063 | 0.8601 | 0.9064 |
| 0.0023 | 20.0 | 13750 | 0.0061 | 0.8589 | 0.9164 |
| 0.002 | 20.9993 | 14437 | 0.0061 | 0.8611 | 0.9046 |
| 0.002 | 22.0 | 15125 | 0.0057 | 0.8633 | 0.9143 |
| 0.002 | 22.9993 | 15812 | 0.0067 | 0.8552 | 0.9133 |
| 0.0018 | 24.0 | 16500 | 0.0068 | 0.8594 | 0.9174 |
| 0.0021 | 24.9993 | 17187 | 0.0063 | 0.8545 | 0.9111 |
| 0.0023 | 26.0 | 17875 | 0.0055 | 0.8642 | 0.9149 |
| 0.0019 | 26.9993 | 18562 | 0.0060 | 0.8627 | 0.9152 |
| 0.0017 | 28.0 | 19250 | 0.0063 | 0.8658 | 0.9148 |
| 0.0017 | 28.9993 | 19937 | 0.0067 | 0.8644 | 0.9085 |
| 0.0017 | 30.0 | 20625 | 0.0068 | 0.8578 | 0.9110 |
| 0.0017 | 30.9993 | 21312 | 0.0067 | 0.8585 | 0.9130 |
| 0.0015 | 32.0 | 22000 | 0.0069 | 0.8613 | 0.9103 |
| 0.0015 | 32.9993 | 22687 | 0.0073 | 0.8599 | 0.9200 |
| 0.0014 | 34.0 | 23375 | 0.0074 | 0.8605 | 0.9181 |
| 0.0014 | 34.9993 | 24062 | 0.0079 | 0.8581 | 0.9174 |
| 0.0013 | 36.0 | 24750 | 0.0081 | 0.8582 | 0.9123 |
| 0.0013 | 36.9993 | 25437 | 0.0084 | 0.8599 | 0.9166 |
| 0.0012 | 38.0 | 26125 | 0.0084 | 0.8603 | 0.9139 |
| 0.0013 | 38.9993 | 26812 | 0.0092 | 0.8599 | 0.9193 |
| 0.0012 | 39.9709 | 27480 | 0.0087 | 0.8602 | 0.9152 |
### Framework versions
- Transformers 4.42.3
- Pytorch 2.1.2
- Datasets 2.20.0
- Tokenizers 0.19.1
|