motexture's picture
Update README.md
d9b7eb7 verified
|
raw
history blame
1.97 kB
metadata
license: apache-2.0
datasets:
  - motexture/cData
language:
  - en
base_model:
  - HuggingFaceTB/SmolLM2-1.7B-Instruct
pipeline_tag: text-generation
tags:
  - smoll
  - coding
  - coder
  - model
  - small

SmolLCoder-1.7B-Instruct

Introduction

SmolLCoder-1.7B-Instruct is a fine-tuned version of SmolLM2-1.7B-Instruct, trained on the cData coding dataset.

Quickstart

Here provides a code snippet with apply_chat_template to show you how to load the tokenizer and model and how to generate contents.

from transformers import AutoModelForCausalLM, AutoTokenizer
device = "cuda" # the device to load the model onto

model = AutoModelForCausalLM.from_pretrained(
    "motexture/SmolLCoder-1.7B-Instruct",
    torch_dtype="auto",
    device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained("motexture/SmolLCoder-1.7B-Instruct")

prompt = "Write a C++ program that prints Hello World!"
messages = [
    {"role": "system", "content": "You are a helpful assistant."},
    {"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(device)

generated_ids = model.generate(
        model_inputs.input_ids,
        max_new_tokens=4096,
        do_sample=True,
        temperature=0.3
)
generated_ids = [
    output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]

response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]

License

Apache 2.0

Citation

@misc{allal2024SmolLM2,
      title={SmolLM2 - with great data, comes great performance}, 
      author={Loubna Ben Allal and Anton Lozhkov and Elie Bakouch and Gabriel Martín Blázquez and Lewis Tunstall and Agustín Piqueres and Andres Marafioti and Cyril Zakka and Leandro von Werra and Thomas Wolf},
      year={2024},
}