|
--- |
|
license: apache-2.0 |
|
language: |
|
- en |
|
pipeline_tag: text-generation |
|
tags: |
|
- chat |
|
- coding |
|
base_model: Qwen/Qwen2-7B |
|
datasets: |
|
- motexture/cData |
|
--- |
|
|
|
# Cwen-7B-Instruct |
|
|
|
## Introduction |
|
|
|
Cwen-7B-Instruct is a fine-tuned version of Qwen2-7B-Instruct, optimized using the cData coding dataset to enhance its coding capabilities across various languages, with a primary focus on low-level ones.<br> |
|
|
|
## Quickstart |
|
|
|
Here provides a code snippet with `apply_chat_template` to show you how to load the tokenizer and model and how to generate contents. |
|
|
|
```python |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
device = "cuda" # the device to load the model onto |
|
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
"motexture/Cwen-7B-Instruct", |
|
torch_dtype="auto", |
|
device_map="auto" |
|
) |
|
tokenizer = AutoTokenizer.from_pretrained("motexture/Cwen-7B-Instruct") |
|
|
|
prompt = "Write a C++ program that demonstrates the concept of separate compilation and linkage using namespaces and header files. The program should consist of multiple source files, each containing a portion of the program's code, and a header file that contains the interface information for the program.\n\nThe program should define a namespace my_namespace that contains a class MyClass with a member function print() that takes an integer as an argument. The program should also define a function main() that uses an object of the MyClass class to print a message.\n\nThe program should be compiled and linked separately, with each source file being compiled individually and then linked together to form the final executable." |
|
messages = [ |
|
{"role": "system", "content": "You are a helpful assistant."}, |
|
{"role": "user", "content": prompt} |
|
] |
|
text = tokenizer.apply_chat_template( |
|
messages, |
|
tokenize=False, |
|
add_generation_prompt=True |
|
) |
|
model_inputs = tokenizer([text], return_tensors="pt").to(device) |
|
|
|
generated_ids = model.generate( |
|
model_inputs.input_ids, |
|
max_new_tokens=4096, |
|
do_sample=True, |
|
temperature=0.3 |
|
) |
|
generated_ids = [ |
|
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) |
|
] |
|
|
|
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] |
|
``` |
|
|
|
## Citation |
|
|
|
``` |
|
@article{qwen2, |
|
title={Qwen2 Technical Report}, |
|
year={2024} |
|
} |
|
``` |