File size: 3,011 Bytes
7156f68 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: t5_recommendation_jobs3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# t5_recommendation_jobs3
This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7154
- Rouge1: 53.3020
- Rouge2: 31.8649
- Rougel: 52.6180
- Rougelsum: 52.6507
- Gen Len: 4.2934
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|
| No log | 0.99 | 93 | 0.7607 | 47.7139 | 25.7252 | 47.3810 | 47.4008 | 3.9914 |
| No log | 1.99 | 187 | 0.7516 | 49.1554 | 27.2693 | 48.5465 | 48.5321 | 4.2381 |
| No log | 3.0 | 281 | 0.7454 | 49.6795 | 27.8710 | 49.2537 | 49.2633 | 4.1665 |
| No log | 4.0 | 375 | 0.7407 | 49.8898 | 27.7613 | 49.4210 | 49.4315 | 4.1331 |
| No log | 4.99 | 468 | 0.7360 | 51.3330 | 29.6585 | 50.9846 | 51.0159 | 4.0724 |
| 0.6327 | 5.99 | 562 | 0.7222 | 50.9951 | 29.7573 | 50.6261 | 50.6555 | 4.1354 |
| 0.6327 | 7.0 | 656 | 0.7175 | 51.8101 | 30.5342 | 51.3743 | 51.3883 | 4.0903 |
| 0.6327 | 8.0 | 750 | 0.7122 | 51.9497 | 30.8316 | 51.4403 | 51.4551 | 4.2553 |
| 0.6327 | 8.99 | 843 | 0.7144 | 52.3842 | 30.7131 | 51.8160 | 51.8629 | 4.1883 |
| 0.6327 | 9.99 | 937 | 0.7134 | 52.4103 | 31.1474 | 51.8047 | 51.8294 | 4.2903 |
| 0.5576 | 11.0 | 1031 | 0.7125 | 52.8364 | 31.2692 | 52.1248 | 52.1554 | 4.3261 |
| 0.5576 | 12.0 | 1125 | 0.7093 | 52.7446 | 30.9128 | 52.0864 | 52.1538 | 4.4202 |
| 0.5576 | 12.99 | 1218 | 0.7104 | 52.9125 | 31.4285 | 52.2397 | 52.2962 | 4.2918 |
| 0.5576 | 13.99 | 1312 | 0.7127 | 53.4228 | 32.2228 | 52.6175 | 52.6691 | 4.2265 |
| 0.5576 | 14.88 | 1395 | 0.7154 | 53.3020 | 31.8649 | 52.6180 | 52.6507 | 4.2934 |
### Framework versions
- Transformers 4.27.0
- Pytorch 2.1.2
- Datasets 2.8.0
- Tokenizers 0.13.3
|