mpt-7b-8k-instruct / mosaicml_logger_utils.py
irenedea's picture
LLM-foundry update March 26, 2024 23:50:31
2cc518e verified
raw
history blame
4.53 kB
import json
import os
from typing import Any, Dict, List, Optional, Union
_MODEL_KEYS_TO_LOG = ['pretrained_model_name_or_path', 'pretrained', 'vocab_size', 'd_model', 'n_heads', 'n_layers', 'expansion_ratio', 'max_seq_len']
def maybe_create_mosaicml_logger() -> Optional[MosaicMLLogger]:
"""Creates a MosaicMLLogger if the run was sent from the Mosaic platform."""
if os.environ.get(MOSAICML_PLATFORM_ENV_VAR, 'false').lower() == 'true' and os.environ.get(MOSAICML_ACCESS_TOKEN_ENV_VAR):
return MosaicMLLogger()
def find_mosaicml_logger(loggers: List[LoggerDestination]) -> Optional[MosaicMLLogger]:
"""Returns the first MosaicMLLogger from a list, and None otherwise."""
return next((logger for logger in loggers if isinstance(logger, MosaicMLLogger)), None)
def log_eval_analytics(mosaicml_logger: MosaicMLLogger, model_configs: ListConfig, icl_tasks: Union[str, ListConfig], eval_gauntlet_config: Optional[Union[str, DictConfig]]):
"""Logs analytics for runs using the `eval.py` script."""
metrics: Dict[str, Any] = {'llmfoundry/script': 'eval'}
metrics['llmfoundry/gauntlet_configured'] = eval_gauntlet_config is not None
metrics['llmfoundry/icl_configured'] = isinstance(icl_tasks, str) or len(icl_tasks) > 0
metrics['llmfoundry/model_configs'] = []
for model_config in model_configs:
nested_model_config = model_config.get('model', {})
model_config_data = {}
for key in _MODEL_KEYS_TO_LOG:
if nested_model_config.get(key, None) is not None:
model_config_data[key] = nested_model_config.get(key)
if len(model_config_data) > 0:
metrics['llmfoundry/model_configs'].append(json.dumps(model_config_data, sort_keys=True))
mosaicml_logger.log_metrics(metrics)
mosaicml_logger._flush_metadata(force_flush=True)
def log_train_analytics(mosaicml_logger: MosaicMLLogger, model_config: DictConfig, train_loader_config: DictConfig, eval_loader_config: Optional[Union[DictConfig, ListConfig]], callback_configs: Optional[DictConfig], tokenizer_name: str, load_path: Optional[str], icl_tasks_config: Optional[Union[ListConfig, str]], eval_gauntlet: Optional[Union[DictConfig, str]]):
"""Logs analytics for runs using the `train.py` script."""
train_loader_dataset = train_loader_config.get('dataset', {})
metrics: Dict[str, Any] = {'llmfoundry/tokenizer_name': tokenizer_name, 'llmfoundry/script': 'train', 'llmfoundry/train_loader_name': train_loader_config.get('name')}
if callback_configs is not None:
metrics['llmfoundry/callbacks'] = [name for name, _ in callback_configs.items()]
metrics['llmfoundry/gauntlet_configured'] = eval_gauntlet is not None
metrics['llmfoundry/icl_configured'] = icl_tasks_config is not None and (isinstance(icl_tasks_config, str) or len(icl_tasks_config) > 0)
if train_loader_dataset.get('hf_name', None) is not None:
metrics['llmfoundry/train_dataset_hf_name'] = train_loader_dataset.get('hf_name', None)
if train_loader_config.get('name') == 'finetuning':
metrics['llmfoundry/train_task_type'] = 'INSTRUCTION_FINETUNE'
elif train_loader_config.get('name') == 'text':
if load_path is not None or model_config.get('pretrained') == True:
metrics['llmfoundry/train_task_type'] = 'CONTINUED_PRETRAIN'
else:
metrics['llmfoundry/train_task_type'] = 'PRETRAIN'
if eval_loader_config is not None:
metrics['llmfoundry/eval_loaders'] = []
if isinstance(eval_loader_config, ListConfig):
eval_loader_configs: ListConfig = eval_loader_config
else:
eval_loader_configs = ListConfig([eval_loader_config])
for loader_config in eval_loader_configs:
eval_loader_info = {}
eval_loader_dataset = loader_config.get('dataset', {})
eval_loader_info['name'] = loader_config.get('name')
if eval_loader_dataset.get('hf_name', None) is not None:
eval_loader_info['dataset_hf_name'] = eval_loader_dataset.get('hf_name')
metrics['llmfoundry/eval_loaders'].append(json.dumps(eval_loader_info, sort_keys=True))
model_config_data = {}
for key in _MODEL_KEYS_TO_LOG:
if model_config.get(key, None) is not None:
model_config_data[f'llmfoundry/{key}'] = model_config.get(key)
if len(model_config_data) > 0:
metrics.update(model_config_data)
mosaicml_logger.log_metrics(metrics)
mosaicml_logger._flush_metadata(force_flush=True)