|
--- |
|
library_name: sklearn |
|
tags: |
|
- sklearn |
|
- skops |
|
- tabular-classification |
|
model_file: model.pkl |
|
widget: |
|
structuredData: |
|
x0: |
|
- -0.09914599897912607 |
|
- 0.1924502175495108 |
|
- -0.17512599701971115 |
|
x1: |
|
- -1.3527180038544737 |
|
- -0.30254418369353936 |
|
- -0.3432808784971574 |
|
x10: |
|
- -1.033043867154581 |
|
- 1.181705677961924 |
|
- -0.9707375350979036 |
|
x11: |
|
- -0.20058976250553548 |
|
- -0.4075697886243593 |
|
- 0.6689385877105022 |
|
x12: |
|
- 1.1264447260202237 |
|
- -0.3277542910601845 |
|
- -0.7061243553947382 |
|
x13: |
|
- 2.3578550805452707 |
|
- -0.2452873082756669 |
|
- 0.16449778472088433 |
|
x14: |
|
- -0.16970349843770105 |
|
- 0.15845033365719116 |
|
- 0.6702026662867782 |
|
x15: |
|
- 1.02155174900202 |
|
- -0.4957105400056871 |
|
- 0.3067590970166067 |
|
x16: |
|
- 0.6475392302343093 |
|
- -1.1039038751689478 |
|
- 0.7252174341663654 |
|
x17: |
|
- -0.6561708760276103 |
|
- 0.4740018109547748 |
|
- 0.465681500410126 |
|
x18: |
|
- -0.6490963010371028 |
|
- 0.17088731040051813 |
|
- -0.17090270391075216 |
|
x19: |
|
- 1.993556271321547 |
|
- -0.8900413826773769 |
|
- 0.4823497456924965 |
|
x2: |
|
- -0.08333069468143207 |
|
- -0.5776679970917816 |
|
- 0.4719859556084112 |
|
x20: |
|
- 0.38373337482281333 |
|
- 0.11724727885071742 |
|
- 0.41793176854856023 |
|
x21: |
|
- -0.48219399953359454 |
|
- 0.5483595851446571 |
|
- -0.2845084323579843 |
|
x22: |
|
- 0.6002099386032473 |
|
- -0.3328169335193628 |
|
- -0.1177130496330338 |
|
x23: |
|
- -0.9986427796510361 |
|
- -0.12805445675530894 |
|
- 0.16764132064699072 |
|
x24: |
|
- 0.9191079842956807 |
|
- -0.2904321748144559 |
|
- 0.9305255321835336 |
|
x25: |
|
- -1.0662088112874974 |
|
- -0.5211282845791263 |
|
- -0.4395435923307972 |
|
x26: |
|
- 0.07671124580480018 |
|
- 0.830067710593458 |
|
- 0.10148248620612801 |
|
x27: |
|
- -0.19394704099684984 |
|
- 0.3655010965468254 |
|
- 0.2082667800019003 |
|
x28: |
|
- -1.06070986806479 |
|
- 0.45059914693412395 |
|
- -0.42221731060136036 |
|
x29: |
|
- -0.49547996576705416 |
|
- 0.293080871191101 |
|
- -0.7124529042788277 |
|
x3: |
|
- 0.40319634268672655 |
|
- -0.7266844038748933 |
|
- -0.4392535240984599 |
|
x30: |
|
- 0.3177776541070613 |
|
- -0.6555347490121567 |
|
- 0.6992894776600148 |
|
x31: |
|
- 0.36132913089368796 |
|
- -0.5052005518828991 |
|
- -0.29502005278945825 |
|
x32: |
|
- -1.5275287471841141 |
|
- 0.6835310518117088 |
|
- -0.852342002620441 |
|
x33: |
|
- 0.41861643726463144 |
|
- 0.24432341138030303 |
|
- 0.28970967818031484 |
|
x34: |
|
- -0.5635425334957935 |
|
- -0.057994651130336465 |
|
- -0.5481205839673382 |
|
x35: |
|
- 0.6952237303944357 |
|
- -0.2186268698466881 |
|
- 1.083122777048039 |
|
x36: |
|
- 0.7923281272792859 |
|
- -0.27781559530809646 |
|
- 0.7338411152759391 |
|
x37: |
|
- -2.5752767636847587 |
|
- 1.386096372652616 |
|
- -0.3566644498671143 |
|
x38: |
|
- -0.24870867574122876 |
|
- 0.47352314520838223 |
|
- 0.5234704003548943 |
|
x39: |
|
- -0.1901453323468956 |
|
- -0.20338282797456578 |
|
- 0.8470486651132534 |
|
x4: |
|
- -0.5374409606451687 |
|
- -0.45754391548594736 |
|
- 0.27538071985784895 |
|
x5: |
|
- -1.7151691480844589 |
|
- 1.5828928158435347 |
|
- -0.47142929432970415 |
|
x6: |
|
- -0.5429735469430116 |
|
- 0.24865361490379212 |
|
- 0.10442729092365317 |
|
x7: |
|
- 1.5994259033001812 |
|
- -1.1704887195126548 |
|
- 0.5751493156703039 |
|
x8: |
|
- 0.5660448068869487 |
|
- -0.14629006117952106 |
|
- -0.7940429338085028 |
|
x9: |
|
- -0.14997228968462223 |
|
- 0.9027177003558653 |
|
- 0.21863455413984226 |
|
--- |
|
|
|
# Model description |
|
|
|
[More Information Needed] |
|
|
|
## Intended uses & limitations |
|
|
|
[More Information Needed] |
|
|
|
## Training Procedure |
|
|
|
### Hyperparameters |
|
|
|
The model is trained with below hyperparameters. |
|
|
|
<details> |
|
<summary> Click to expand </summary> |
|
|
|
| Hyperparameter | Value | |
|
|-------------------------|-----------------| |
|
| objective | binary:logistic | |
|
| use_label_encoder | | |
|
| base_score | 0.5 | |
|
| booster | gbtree | |
|
| callbacks | | |
|
| colsample_bylevel | 1 | |
|
| colsample_bynode | 1 | |
|
| colsample_bytree | 1 | |
|
| early_stopping_rounds | | |
|
| enable_categorical | False | |
|
| eval_metric | logloss | |
|
| feature_types | | |
|
| gamma | 3 | |
|
| gpu_id | -1 | |
|
| grow_policy | depthwise | |
|
| importance_type | | |
|
| interaction_constraints | | |
|
| learning_rate | 0.1 | |
|
| max_bin | 256 | |
|
| max_cat_threshold | 64 | |
|
| max_cat_to_onehot | 4 | |
|
| max_delta_step | 0 | |
|
| max_depth | 6 | |
|
| max_leaves | 0 | |
|
| min_child_weight | 1 | |
|
| missing | nan | |
|
| monotone_constraints | () | |
|
| n_estimators | 250 | |
|
| n_jobs | 0 | |
|
| num_parallel_tree | 1 | |
|
| predictor | auto | |
|
| random_state | 1 | |
|
| reg_alpha | 0 | |
|
| reg_lambda | 1 | |
|
| sampling_method | uniform | |
|
| scale_pos_weight | 10 | |
|
| subsample | 0.8 | |
|
| tree_method | exact | |
|
| validate_parameters | 1 | |
|
| verbosity | | |
|
|
|
</details> |
|
|
|
### Model Plot |
|
|
|
The model plot is below. |
|
|
|
<style>#sk-container-id-2 {color: black;background-color: white;}#sk-container-id-2 pre{padding: 0;}#sk-container-id-2 div.sk-toggleable {background-color: white;}#sk-container-id-2 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-container-id-2 label.sk-toggleable__label-arrow:before {content: "▸";float: left;margin-right: 0.25em;color: #696969;}#sk-container-id-2 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-container-id-2 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-container-id-2 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-container-id-2 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-container-id-2 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-container-id-2 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";}#sk-container-id-2 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-2 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-2 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-container-id-2 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-container-id-2 div.sk-estimator:hover {background-color: #d4ebff;}#sk-container-id-2 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-container-id-2 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-2 div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: 0;}#sk-container-id-2 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;position: relative;}#sk-container-id-2 div.sk-item {position: relative;z-index: 1;}#sk-container-id-2 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;position: relative;}#sk-container-id-2 div.sk-item::before, #sk-container-id-2 div.sk-parallel-item::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: -1;}#sk-container-id-2 div.sk-parallel-item {display: flex;flex-direction: column;z-index: 1;position: relative;background-color: white;}#sk-container-id-2 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-container-id-2 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-container-id-2 div.sk-parallel-item:only-child::after {width: 0;}#sk-container-id-2 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;}#sk-container-id-2 div.sk-label label {font-family: monospace;font-weight: bold;display: inline-block;line-height: 1.2em;}#sk-container-id-2 div.sk-label-container {text-align: center;}#sk-container-id-2 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-container-id-2 div.sk-text-repr-fallback {display: none;}</style><div id="sk-container-id-2" class="sk-top-container" style="overflow: auto;"><div class="sk-text-repr-fallback"><pre>XGBClassifier(base_score=0.5, booster='gbtree', callbacks=None,colsample_bylevel=1, colsample_bynode=1, colsample_bytree=1,early_stopping_rounds=None, enable_categorical=False,eval_metric='logloss', feature_types=None, gamma=3, gpu_id=-1,grow_policy='depthwise', importance_type=None,interaction_constraints='', learning_rate=0.1, max_bin=256,max_cat_threshold=64, max_cat_to_onehot=4, max_delta_step=0,max_depth=6, max_leaves=0, min_child_weight=1, missing=nan,monotone_constraints='()', n_estimators=250, n_jobs=0,num_parallel_tree=1, predictor='auto', random_state=1, ...)</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class="sk-container" hidden><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-2" type="checkbox" checked><label for="sk-estimator-id-2" class="sk-toggleable__label sk-toggleable__label-arrow">XGBClassifier</label><div class="sk-toggleable__content"><pre>XGBClassifier(base_score=0.5, booster='gbtree', callbacks=None,colsample_bylevel=1, colsample_bynode=1, colsample_bytree=1,early_stopping_rounds=None, enable_categorical=False,eval_metric='logloss', feature_types=None, gamma=3, gpu_id=-1,grow_policy='depthwise', importance_type=None,interaction_constraints='', learning_rate=0.1, max_bin=256,max_cat_threshold=64, max_cat_to_onehot=4, max_delta_step=0,max_depth=6, max_leaves=0, min_child_weight=1, missing=nan,monotone_constraints='()', n_estimators=250, n_jobs=0,num_parallel_tree=1, predictor='auto', random_state=1, ...)</pre></div></div></div></div></div> |
|
|
|
## Evaluation Results |
|
|
|
[More Information Needed] |
|
|
|
# How to Get Started with the Model |
|
|
|
[More Information Needed] |
|
|
|
# Model Card Authors |
|
|
|
This model card is written by following authors: |
|
|
|
[More Information Needed] |
|
|
|
# Model Card Contact |
|
|
|
You can contact the model card authors through following channels: |
|
[More Information Needed] |
|
|
|
# Citation |
|
|
|
Below you can find information related to citation. |
|
|
|
**BibTeX:** |
|
``` |
|
[More Information Needed] |
|
``` |
|
|
|
# model_card_authors |
|
|
|
Moro abdul Wahab |
|
|
|
# model_description |
|
|
|
ML classification model to predict or identify failures in a generator |
|
|