File size: 12,405 Bytes
d118686 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 |
---
library_name: sklearn
tags:
- sklearn
- skops
- tabular-classification
model_file: model.pkl
widget:
structuredData:
x0:
- -0.09914599897912607
- 0.1924502175495108
- -0.17512599701971115
x1:
- -1.3527180038544737
- -0.30254418369353936
- -0.3432808784971574
x10:
- -1.033043867154581
- 1.181705677961924
- -0.9707375350979036
x11:
- -0.20058976250553548
- -0.4075697886243593
- 0.6689385877105022
x12:
- 1.1264447260202237
- -0.3277542910601845
- -0.7061243553947382
x13:
- 2.3578550805452707
- -0.2452873082756669
- 0.16449778472088433
x14:
- -0.16970349843770105
- 0.15845033365719116
- 0.6702026662867782
x15:
- 1.02155174900202
- -0.4957105400056871
- 0.3067590970166067
x16:
- 0.6475392302343093
- -1.1039038751689478
- 0.7252174341663654
x17:
- -0.6561708760276103
- 0.4740018109547748
- 0.465681500410126
x18:
- -0.6490963010371028
- 0.17088731040051813
- -0.17090270391075216
x19:
- 1.993556271321547
- -0.8900413826773769
- 0.4823497456924965
x2:
- -0.08333069468143207
- -0.5776679970917816
- 0.4719859556084112
x20:
- 0.38373337482281333
- 0.11724727885071742
- 0.41793176854856023
x21:
- -0.48219399953359454
- 0.5483595851446571
- -0.2845084323579843
x22:
- 0.6002099386032473
- -0.3328169335193628
- -0.1177130496330338
x23:
- -0.9986427796510361
- -0.12805445675530894
- 0.16764132064699072
x24:
- 0.9191079842956807
- -0.2904321748144559
- 0.9305255321835336
x25:
- -1.0662088112874974
- -0.5211282845791263
- -0.4395435923307972
x26:
- 0.07671124580480018
- 0.830067710593458
- 0.10148248620612801
x27:
- -0.19394704099684984
- 0.3655010965468254
- 0.2082667800019003
x28:
- -1.06070986806479
- 0.45059914693412395
- -0.42221731060136036
x29:
- -0.49547996576705416
- 0.293080871191101
- -0.7124529042788277
x3:
- 0.40319634268672655
- -0.7266844038748933
- -0.4392535240984599
x30:
- 0.3177776541070613
- -0.6555347490121567
- 0.6992894776600148
x31:
- 0.36132913089368796
- -0.5052005518828991
- -0.29502005278945825
x32:
- -1.5275287471841141
- 0.6835310518117088
- -0.852342002620441
x33:
- 0.41861643726463144
- 0.24432341138030303
- 0.28970967818031484
x34:
- -0.5635425334957935
- -0.057994651130336465
- -0.5481205839673382
x35:
- 0.6952237303944357
- -0.2186268698466881
- 1.083122777048039
x36:
- 0.7923281272792859
- -0.27781559530809646
- 0.7338411152759391
x37:
- -2.5752767636847587
- 1.386096372652616
- -0.3566644498671143
x38:
- -0.24870867574122876
- 0.47352314520838223
- 0.5234704003548943
x39:
- -0.1901453323468956
- -0.20338282797456578
- 0.8470486651132534
x4:
- -0.5374409606451687
- -0.45754391548594736
- 0.27538071985784895
x5:
- -1.7151691480844589
- 1.5828928158435347
- -0.47142929432970415
x6:
- -0.5429735469430116
- 0.24865361490379212
- 0.10442729092365317
x7:
- 1.5994259033001812
- -1.1704887195126548
- 0.5751493156703039
x8:
- 0.5660448068869487
- -0.14629006117952106
- -0.7940429338085028
x9:
- -0.14997228968462223
- 0.9027177003558653
- 0.21863455413984226
---
# Model description
[More Information Needed]
## Intended uses & limitations
[More Information Needed]
## Training Procedure
### Hyperparameters
The model is trained with below hyperparameters.
<details>
<summary> Click to expand </summary>
| Hyperparameter | Value |
|-------------------------|-----------------|
| objective | binary:logistic |
| use_label_encoder | |
| base_score | 0.5 |
| booster | gbtree |
| callbacks | |
| colsample_bylevel | 1 |
| colsample_bynode | 1 |
| colsample_bytree | 1 |
| early_stopping_rounds | |
| enable_categorical | False |
| eval_metric | logloss |
| feature_types | |
| gamma | 3 |
| gpu_id | -1 |
| grow_policy | depthwise |
| importance_type | |
| interaction_constraints | |
| learning_rate | 0.1 |
| max_bin | 256 |
| max_cat_threshold | 64 |
| max_cat_to_onehot | 4 |
| max_delta_step | 0 |
| max_depth | 6 |
| max_leaves | 0 |
| min_child_weight | 1 |
| missing | nan |
| monotone_constraints | () |
| n_estimators | 250 |
| n_jobs | 0 |
| num_parallel_tree | 1 |
| predictor | auto |
| random_state | 1 |
| reg_alpha | 0 |
| reg_lambda | 1 |
| sampling_method | uniform |
| scale_pos_weight | 10 |
| subsample | 0.8 |
| tree_method | exact |
| validate_parameters | 1 |
| verbosity | |
</details>
### Model Plot
The model plot is below.
<style>#sk-container-id-2 {color: black;background-color: white;}#sk-container-id-2 pre{padding: 0;}#sk-container-id-2 div.sk-toggleable {background-color: white;}#sk-container-id-2 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-container-id-2 label.sk-toggleable__label-arrow:before {content: "▸";float: left;margin-right: 0.25em;color: #696969;}#sk-container-id-2 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-container-id-2 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-container-id-2 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-container-id-2 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-container-id-2 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-container-id-2 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";}#sk-container-id-2 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-2 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-2 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-container-id-2 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-container-id-2 div.sk-estimator:hover {background-color: #d4ebff;}#sk-container-id-2 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-container-id-2 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-2 div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: 0;}#sk-container-id-2 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;position: relative;}#sk-container-id-2 div.sk-item {position: relative;z-index: 1;}#sk-container-id-2 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;position: relative;}#sk-container-id-2 div.sk-item::before, #sk-container-id-2 div.sk-parallel-item::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: -1;}#sk-container-id-2 div.sk-parallel-item {display: flex;flex-direction: column;z-index: 1;position: relative;background-color: white;}#sk-container-id-2 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-container-id-2 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-container-id-2 div.sk-parallel-item:only-child::after {width: 0;}#sk-container-id-2 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;}#sk-container-id-2 div.sk-label label {font-family: monospace;font-weight: bold;display: inline-block;line-height: 1.2em;}#sk-container-id-2 div.sk-label-container {text-align: center;}#sk-container-id-2 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-container-id-2 div.sk-text-repr-fallback {display: none;}</style><div id="sk-container-id-2" class="sk-top-container" style="overflow: auto;"><div class="sk-text-repr-fallback"><pre>XGBClassifier(base_score=0.5, booster='gbtree', callbacks=None,colsample_bylevel=1, colsample_bynode=1, colsample_bytree=1,early_stopping_rounds=None, enable_categorical=False,eval_metric='logloss', feature_types=None, gamma=3, gpu_id=-1,grow_policy='depthwise', importance_type=None,interaction_constraints='', learning_rate=0.1, max_bin=256,max_cat_threshold=64, max_cat_to_onehot=4, max_delta_step=0,max_depth=6, max_leaves=0, min_child_weight=1, missing=nan,monotone_constraints='()', n_estimators=250, n_jobs=0,num_parallel_tree=1, predictor='auto', random_state=1, ...)</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class="sk-container" hidden><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-2" type="checkbox" checked><label for="sk-estimator-id-2" class="sk-toggleable__label sk-toggleable__label-arrow">XGBClassifier</label><div class="sk-toggleable__content"><pre>XGBClassifier(base_score=0.5, booster='gbtree', callbacks=None,colsample_bylevel=1, colsample_bynode=1, colsample_bytree=1,early_stopping_rounds=None, enable_categorical=False,eval_metric='logloss', feature_types=None, gamma=3, gpu_id=-1,grow_policy='depthwise', importance_type=None,interaction_constraints='', learning_rate=0.1, max_bin=256,max_cat_threshold=64, max_cat_to_onehot=4, max_delta_step=0,max_depth=6, max_leaves=0, min_child_weight=1, missing=nan,monotone_constraints='()', n_estimators=250, n_jobs=0,num_parallel_tree=1, predictor='auto', random_state=1, ...)</pre></div></div></div></div></div>
## Evaluation Results
[More Information Needed]
# How to Get Started with the Model
[More Information Needed]
# Model Card Authors
This model card is written by following authors:
[More Information Needed]
# Model Card Contact
You can contact the model card authors through following channels:
[More Information Needed]
# Citation
Below you can find information related to citation.
**BibTeX:**
```
[More Information Needed]
```
# model_card_authors
Moro abdul Wahab
# model_description
ML classification model to predict or identify failures in a generator
|