File size: 12,405 Bytes
d118686
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
---
library_name: sklearn
tags:
- sklearn
- skops
- tabular-classification
model_file: model.pkl
widget:
  structuredData:
    x0:
    - -0.09914599897912607
    - 0.1924502175495108
    - -0.17512599701971115
    x1:
    - -1.3527180038544737
    - -0.30254418369353936
    - -0.3432808784971574
    x10:
    - -1.033043867154581
    - 1.181705677961924
    - -0.9707375350979036
    x11:
    - -0.20058976250553548
    - -0.4075697886243593
    - 0.6689385877105022
    x12:
    - 1.1264447260202237
    - -0.3277542910601845
    - -0.7061243553947382
    x13:
    - 2.3578550805452707
    - -0.2452873082756669
    - 0.16449778472088433
    x14:
    - -0.16970349843770105
    - 0.15845033365719116
    - 0.6702026662867782
    x15:
    - 1.02155174900202
    - -0.4957105400056871
    - 0.3067590970166067
    x16:
    - 0.6475392302343093
    - -1.1039038751689478
    - 0.7252174341663654
    x17:
    - -0.6561708760276103
    - 0.4740018109547748
    - 0.465681500410126
    x18:
    - -0.6490963010371028
    - 0.17088731040051813
    - -0.17090270391075216
    x19:
    - 1.993556271321547
    - -0.8900413826773769
    - 0.4823497456924965
    x2:
    - -0.08333069468143207
    - -0.5776679970917816
    - 0.4719859556084112
    x20:
    - 0.38373337482281333
    - 0.11724727885071742
    - 0.41793176854856023
    x21:
    - -0.48219399953359454
    - 0.5483595851446571
    - -0.2845084323579843
    x22:
    - 0.6002099386032473
    - -0.3328169335193628
    - -0.1177130496330338
    x23:
    - -0.9986427796510361
    - -0.12805445675530894
    - 0.16764132064699072
    x24:
    - 0.9191079842956807
    - -0.2904321748144559
    - 0.9305255321835336
    x25:
    - -1.0662088112874974
    - -0.5211282845791263
    - -0.4395435923307972
    x26:
    - 0.07671124580480018
    - 0.830067710593458
    - 0.10148248620612801
    x27:
    - -0.19394704099684984
    - 0.3655010965468254
    - 0.2082667800019003
    x28:
    - -1.06070986806479
    - 0.45059914693412395
    - -0.42221731060136036
    x29:
    - -0.49547996576705416
    - 0.293080871191101
    - -0.7124529042788277
    x3:
    - 0.40319634268672655
    - -0.7266844038748933
    - -0.4392535240984599
    x30:
    - 0.3177776541070613
    - -0.6555347490121567
    - 0.6992894776600148
    x31:
    - 0.36132913089368796
    - -0.5052005518828991
    - -0.29502005278945825
    x32:
    - -1.5275287471841141
    - 0.6835310518117088
    - -0.852342002620441
    x33:
    - 0.41861643726463144
    - 0.24432341138030303
    - 0.28970967818031484
    x34:
    - -0.5635425334957935
    - -0.057994651130336465
    - -0.5481205839673382
    x35:
    - 0.6952237303944357
    - -0.2186268698466881
    - 1.083122777048039
    x36:
    - 0.7923281272792859
    - -0.27781559530809646
    - 0.7338411152759391
    x37:
    - -2.5752767636847587
    - 1.386096372652616
    - -0.3566644498671143
    x38:
    - -0.24870867574122876
    - 0.47352314520838223
    - 0.5234704003548943
    x39:
    - -0.1901453323468956
    - -0.20338282797456578
    - 0.8470486651132534
    x4:
    - -0.5374409606451687
    - -0.45754391548594736
    - 0.27538071985784895
    x5:
    - -1.7151691480844589
    - 1.5828928158435347
    - -0.47142929432970415
    x6:
    - -0.5429735469430116
    - 0.24865361490379212
    - 0.10442729092365317
    x7:
    - 1.5994259033001812
    - -1.1704887195126548
    - 0.5751493156703039
    x8:
    - 0.5660448068869487
    - -0.14629006117952106
    - -0.7940429338085028
    x9:
    - -0.14997228968462223
    - 0.9027177003558653
    - 0.21863455413984226
---

# Model description

[More Information Needed]

## Intended uses & limitations

[More Information Needed]

## Training Procedure

### Hyperparameters

The model is trained with below hyperparameters.

<details>
<summary> Click to expand </summary>

| Hyperparameter          | Value           |
|-------------------------|-----------------|
| objective               | binary:logistic |
| use_label_encoder       |                 |
| base_score              | 0.5             |
| booster                 | gbtree          |
| callbacks               |                 |
| colsample_bylevel       | 1               |
| colsample_bynode        | 1               |
| colsample_bytree        | 1               |
| early_stopping_rounds   |                 |
| enable_categorical      | False           |
| eval_metric             | logloss         |
| feature_types           |                 |
| gamma                   | 3               |
| gpu_id                  | -1              |
| grow_policy             | depthwise       |
| importance_type         |                 |
| interaction_constraints |                 |
| learning_rate           | 0.1             |
| max_bin                 | 256             |
| max_cat_threshold       | 64              |
| max_cat_to_onehot       | 4               |
| max_delta_step          | 0               |
| max_depth               | 6               |
| max_leaves              | 0               |
| min_child_weight        | 1               |
| missing                 | nan             |
| monotone_constraints    | ()              |
| n_estimators            | 250             |
| n_jobs                  | 0               |
| num_parallel_tree       | 1               |
| predictor               | auto            |
| random_state            | 1               |
| reg_alpha               | 0               |
| reg_lambda              | 1               |
| sampling_method         | uniform         |
| scale_pos_weight        | 10              |
| subsample               | 0.8             |
| tree_method             | exact           |
| validate_parameters     | 1               |
| verbosity               |                 |

</details>

### Model Plot

The model plot is below.

<style>#sk-container-id-2 {color: black;background-color: white;}#sk-container-id-2 pre{padding: 0;}#sk-container-id-2 div.sk-toggleable {background-color: white;}#sk-container-id-2 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-container-id-2 label.sk-toggleable__label-arrow:before {content: "▸";float: left;margin-right: 0.25em;color: #696969;}#sk-container-id-2 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-container-id-2 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-container-id-2 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-container-id-2 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-container-id-2 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-container-id-2 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";}#sk-container-id-2 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-2 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-2 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-container-id-2 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-container-id-2 div.sk-estimator:hover {background-color: #d4ebff;}#sk-container-id-2 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-container-id-2 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-2 div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: 0;}#sk-container-id-2 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;position: relative;}#sk-container-id-2 div.sk-item {position: relative;z-index: 1;}#sk-container-id-2 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;position: relative;}#sk-container-id-2 div.sk-item::before, #sk-container-id-2 div.sk-parallel-item::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: -1;}#sk-container-id-2 div.sk-parallel-item {display: flex;flex-direction: column;z-index: 1;position: relative;background-color: white;}#sk-container-id-2 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-container-id-2 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-container-id-2 div.sk-parallel-item:only-child::after {width: 0;}#sk-container-id-2 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;}#sk-container-id-2 div.sk-label label {font-family: monospace;font-weight: bold;display: inline-block;line-height: 1.2em;}#sk-container-id-2 div.sk-label-container {text-align: center;}#sk-container-id-2 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-container-id-2 div.sk-text-repr-fallback {display: none;}</style><div id="sk-container-id-2" class="sk-top-container" style="overflow: auto;"><div class="sk-text-repr-fallback"><pre>XGBClassifier(base_score=0.5, booster=&#x27;gbtree&#x27;, callbacks=None,colsample_bylevel=1, colsample_bynode=1, colsample_bytree=1,early_stopping_rounds=None, enable_categorical=False,eval_metric=&#x27;logloss&#x27;, feature_types=None, gamma=3, gpu_id=-1,grow_policy=&#x27;depthwise&#x27;, importance_type=None,interaction_constraints=&#x27;&#x27;, learning_rate=0.1, max_bin=256,max_cat_threshold=64, max_cat_to_onehot=4, max_delta_step=0,max_depth=6, max_leaves=0, min_child_weight=1, missing=nan,monotone_constraints=&#x27;()&#x27;, n_estimators=250, n_jobs=0,num_parallel_tree=1, predictor=&#x27;auto&#x27;, random_state=1, ...)</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class="sk-container" hidden><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-2" type="checkbox" checked><label for="sk-estimator-id-2" class="sk-toggleable__label sk-toggleable__label-arrow">XGBClassifier</label><div class="sk-toggleable__content"><pre>XGBClassifier(base_score=0.5, booster=&#x27;gbtree&#x27;, callbacks=None,colsample_bylevel=1, colsample_bynode=1, colsample_bytree=1,early_stopping_rounds=None, enable_categorical=False,eval_metric=&#x27;logloss&#x27;, feature_types=None, gamma=3, gpu_id=-1,grow_policy=&#x27;depthwise&#x27;, importance_type=None,interaction_constraints=&#x27;&#x27;, learning_rate=0.1, max_bin=256,max_cat_threshold=64, max_cat_to_onehot=4, max_delta_step=0,max_depth=6, max_leaves=0, min_child_weight=1, missing=nan,monotone_constraints=&#x27;()&#x27;, n_estimators=250, n_jobs=0,num_parallel_tree=1, predictor=&#x27;auto&#x27;, random_state=1, ...)</pre></div></div></div></div></div>

## Evaluation Results

[More Information Needed]

# How to Get Started with the Model

[More Information Needed]

# Model Card Authors

This model card is written by following authors:

[More Information Needed]

# Model Card Contact

You can contact the model card authors through following channels:
[More Information Needed]

# Citation

Below you can find information related to citation.

**BibTeX:**
```
[More Information Needed]
```

# model_card_authors

Moro abdul Wahab

# model_description

ML classification model to predict or identify failures in a generator