metadata
base_model: BAAI/bge-base-en-v1.5
datasets: []
language:
- en
library_name: sentence-transformers
license: apache-2.0
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:6300
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: >-
The table indicates that 18,000 deferred shares were granted to
non-employee directors in fiscal 2020, 15,000 in fiscal 2021, and 19,000
in fiscal 2022.
sentences:
- >-
What was the primary reason for the increased audit effort for PCC
goodwill and indefinite-lived intangible assets?
- >-
How many deferred shares were granted to non-employee directors in
fiscal 2020, 2021, and 2022?
- >-
What was the total intrinsic value of options exercised in fiscal year
2023?
- source_sentence: >-
In Resource Masking Industries, we expect the profit impact from lower
sales volume to be partially offset by favorable price realization.
sentences:
- >-
By what percentage did Electronic Arts' operating income grow in the
fiscal year ended March 31, 2023?
- >-
What impact is expected on Resource Industries' profit due to lower
sales volume?
- >-
How are IBM’s 2023 Annual Report to Stockholders' financial statements
made a part of Form 10-K?
- source_sentence: >-
The actuarial gain during the year ended December 31, 2022 was primarily
related to increases in the discount rate assumptions.
sentences:
- >-
What was the primary reason for the actuarial gain during the year ended
December 31, 2022?
- How much did Ford's total assets amount to by December 31, 2023?
- >-
What was the remaining available amount of the share repurchase
authorization as of January 29, 2023?
- source_sentence: >-
Returned $1.7 billion to shareholders through share repurchases and
dividend payments.
sentences:
- >-
What was the carrying amount of investments without readily determinable
fair values as of December 31, 2023?
- >-
What are the significant inputs to the valuation of Goldman Sachs'
unsecured short- and long-term borrowings?
- >-
How much did the company return to shareholders through share
repurchases and dividend payments in 2022?
- source_sentence: >-
The remaining amount available for borrowing under the Revolving Credit
Facility as of December 31, 2023, was $2,245.2 million.
sentences:
- >-
What was the total amount available for borrowing under the Revolving
Credit Facility at Iron Mountain as of December 31, 2023?
- >-
What type of information is included in Note 13 of the Annual Report on
Form 10-K?
- >-
How much did local currency revenue increase in Latin America in 2023
compared to 2022?
model-index:
- name: BGE base Financial Matryoshka
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 768
type: dim_768
metrics:
- type: cosine_accuracy@1
value: 0.6828571428571428
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8242857142857143
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8557142857142858
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9057142857142857
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6828571428571428
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2747619047619047
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17114285714285712
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09057142857142855
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6828571428571428
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8242857142857143
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8557142857142858
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9057142857142857
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7963610970343802
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7612930839002267
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7648513048205645
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 512
type: dim_512
metrics:
- type: cosine_accuracy@1
value: 0.68
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8157142857142857
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8542857142857143
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.68
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.27190476190476187
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17085714285714285
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.68
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8157142857142857
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8542857142857143
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7911616934987842
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7562284580498863
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.760087172570928
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.68
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8114285714285714
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8485714285714285
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8971428571428571
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.68
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2704761904761905
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.16971428571428568
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.0897142857142857
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.68
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8114285714285714
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8485714285714285
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8971428571428571
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7888581850866868
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7542278911564625
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7579536807505182
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1
value: 0.6571428571428571
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.79
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8285714285714286
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8857142857142857
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6571428571428571
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2633333333333333
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.1657142857142857
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08857142857142856
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6571428571428571
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.79
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8285714285714286
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8857142857142857
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7703812626851927
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.733632653061224
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7378840513025602
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 64
type: dim_64
metrics:
- type: cosine_accuracy@1
value: 0.62
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.77
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8028571428571428
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.85
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.62
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.25666666666666665
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.16057142857142856
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.085
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.62
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.77
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8028571428571428
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.85
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.73777886683529
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7016190476190474
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7073607864232172
name: Cosine Map@100
BGE base Financial Matryoshka
This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-base-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Language: en
- License: apache-2.0
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("moritzglnr/bge-base-financial-matryoshka")
sentences = [
'The remaining amount available for borrowing under the Revolving Credit Facility as of December 31, 2023, was $2,245.2 million.',
'What was the total amount available for borrowing under the Revolving Credit Facility at Iron Mountain as of December 31, 2023?',
'What type of information is included in Note 13 of the Annual Report on Form 10-K?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.6829 |
cosine_accuracy@3 |
0.8243 |
cosine_accuracy@5 |
0.8557 |
cosine_accuracy@10 |
0.9057 |
cosine_precision@1 |
0.6829 |
cosine_precision@3 |
0.2748 |
cosine_precision@5 |
0.1711 |
cosine_precision@10 |
0.0906 |
cosine_recall@1 |
0.6829 |
cosine_recall@3 |
0.8243 |
cosine_recall@5 |
0.8557 |
cosine_recall@10 |
0.9057 |
cosine_ndcg@10 |
0.7964 |
cosine_mrr@10 |
0.7613 |
cosine_map@100 |
0.7649 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.68 |
cosine_accuracy@3 |
0.8157 |
cosine_accuracy@5 |
0.8543 |
cosine_accuracy@10 |
0.9 |
cosine_precision@1 |
0.68 |
cosine_precision@3 |
0.2719 |
cosine_precision@5 |
0.1709 |
cosine_precision@10 |
0.09 |
cosine_recall@1 |
0.68 |
cosine_recall@3 |
0.8157 |
cosine_recall@5 |
0.8543 |
cosine_recall@10 |
0.9 |
cosine_ndcg@10 |
0.7912 |
cosine_mrr@10 |
0.7562 |
cosine_map@100 |
0.7601 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.68 |
cosine_accuracy@3 |
0.8114 |
cosine_accuracy@5 |
0.8486 |
cosine_accuracy@10 |
0.8971 |
cosine_precision@1 |
0.68 |
cosine_precision@3 |
0.2705 |
cosine_precision@5 |
0.1697 |
cosine_precision@10 |
0.0897 |
cosine_recall@1 |
0.68 |
cosine_recall@3 |
0.8114 |
cosine_recall@5 |
0.8486 |
cosine_recall@10 |
0.8971 |
cosine_ndcg@10 |
0.7889 |
cosine_mrr@10 |
0.7542 |
cosine_map@100 |
0.758 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.6571 |
cosine_accuracy@3 |
0.79 |
cosine_accuracy@5 |
0.8286 |
cosine_accuracy@10 |
0.8857 |
cosine_precision@1 |
0.6571 |
cosine_precision@3 |
0.2633 |
cosine_precision@5 |
0.1657 |
cosine_precision@10 |
0.0886 |
cosine_recall@1 |
0.6571 |
cosine_recall@3 |
0.79 |
cosine_recall@5 |
0.8286 |
cosine_recall@10 |
0.8857 |
cosine_ndcg@10 |
0.7704 |
cosine_mrr@10 |
0.7336 |
cosine_map@100 |
0.7379 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.62 |
cosine_accuracy@3 |
0.77 |
cosine_accuracy@5 |
0.8029 |
cosine_accuracy@10 |
0.85 |
cosine_precision@1 |
0.62 |
cosine_precision@3 |
0.2567 |
cosine_precision@5 |
0.1606 |
cosine_precision@10 |
0.085 |
cosine_recall@1 |
0.62 |
cosine_recall@3 |
0.77 |
cosine_recall@5 |
0.8029 |
cosine_recall@10 |
0.85 |
cosine_ndcg@10 |
0.7378 |
cosine_mrr@10 |
0.7016 |
cosine_map@100 |
0.7074 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 6,300 training samples
- Columns:
positive
and anchor
- Approximate statistics based on the first 1000 samples:
|
positive |
anchor |
type |
string |
string |
details |
- min: 2 tokens
- mean: 46.27 tokens
- max: 326 tokens
|
- min: 2 tokens
- mean: 20.87 tokens
- max: 51 tokens
|
- Samples:
positive |
anchor |
We utilize a full yield curve approach in the estimation of service and interest costs by applying the specific spot rates along the yield curve used in the determination of the benefit obligation to the relevant projected cash flows. This approach provides a more precise measurement of service and interest costs by improving the correlation between the projected cash flows to the corresponding spot rates along the yield curve. This approach does not affect the measurement of our pension and other post-retirement benefit liabilities but generally results in lower benefit expense in periods when the yield curve is upward sloping. |
How does the use of a full yield curve approach in estimating pension costs affect the measurement of liabilities and expenses? |
Ending |
8,134 |
The company's capital expenditures for 2024 are expected to be approximately $5.7 billion. |
How much does the company expect to spend on capital expenditures in 2024? |
- Loss:
MatryoshkaLoss
with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epoch
per_device_train_batch_size
: 32
per_device_eval_batch_size
: 16
gradient_accumulation_steps
: 16
learning_rate
: 2e-05
num_train_epochs
: 4
lr_scheduler_type
: cosine
warmup_ratio
: 0.1
bf16
: True
tf32
: True
load_best_model_at_end
: True
optim
: adamw_torch_fused
batch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: False
do_predict
: False
eval_strategy
: epoch
prediction_loss_only
: True
per_device_train_batch_size
: 32
per_device_eval_batch_size
: 16
per_gpu_train_batch_size
: None
per_gpu_eval_batch_size
: None
gradient_accumulation_steps
: 16
eval_accumulation_steps
: None
learning_rate
: 2e-05
weight_decay
: 0.0
adam_beta1
: 0.9
adam_beta2
: 0.999
adam_epsilon
: 1e-08
max_grad_norm
: 1.0
num_train_epochs
: 4
max_steps
: -1
lr_scheduler_type
: cosine
lr_scheduler_kwargs
: {}
warmup_ratio
: 0.1
warmup_steps
: 0
log_level
: passive
log_level_replica
: warning
log_on_each_node
: True
logging_nan_inf_filter
: True
save_safetensors
: True
save_on_each_node
: False
save_only_model
: False
restore_callback_states_from_checkpoint
: False
no_cuda
: False
use_cpu
: False
use_mps_device
: False
seed
: 42
data_seed
: None
jit_mode_eval
: False
use_ipex
: False
bf16
: True
fp16
: False
fp16_opt_level
: O1
half_precision_backend
: auto
bf16_full_eval
: False
fp16_full_eval
: False
tf32
: True
local_rank
: 0
ddp_backend
: None
tpu_num_cores
: None
tpu_metrics_debug
: False
debug
: []
dataloader_drop_last
: False
dataloader_num_workers
: 0
dataloader_prefetch_factor
: None
past_index
: -1
disable_tqdm
: False
remove_unused_columns
: True
label_names
: None
load_best_model_at_end
: True
ignore_data_skip
: False
fsdp
: []
fsdp_min_num_params
: 0
fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap
: None
accelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed
: None
label_smoothing_factor
: 0.0
optim
: adamw_torch_fused
optim_args
: None
adafactor
: False
group_by_length
: False
length_column_name
: length
ddp_find_unused_parameters
: None
ddp_bucket_cap_mb
: None
ddp_broadcast_buffers
: False
dataloader_pin_memory
: True
dataloader_persistent_workers
: False
skip_memory_metrics
: True
use_legacy_prediction_loop
: False
push_to_hub
: False
resume_from_checkpoint
: None
hub_model_id
: None
hub_strategy
: every_save
hub_private_repo
: False
hub_always_push
: False
gradient_checkpointing
: False
gradient_checkpointing_kwargs
: None
include_inputs_for_metrics
: False
eval_do_concat_batches
: True
fp16_backend
: auto
push_to_hub_model_id
: None
push_to_hub_organization
: None
mp_parameters
:
auto_find_batch_size
: False
full_determinism
: False
torchdynamo
: None
ray_scope
: last
ddp_timeout
: 1800
torch_compile
: False
torch_compile_backend
: None
torch_compile_mode
: None
dispatch_batches
: None
split_batches
: None
include_tokens_per_second
: False
include_num_input_tokens_seen
: False
neftune_noise_alpha
: None
optim_target_modules
: None
batch_eval_metrics
: False
batch_sampler
: no_duplicates
multi_dataset_batch_sampler
: proportional
Training Logs
Epoch |
Step |
Training Loss |
dim_128_cosine_map@100 |
dim_256_cosine_map@100 |
dim_512_cosine_map@100 |
dim_64_cosine_map@100 |
dim_768_cosine_map@100 |
0.8122 |
10 |
1.5661 |
- |
- |
- |
- |
- |
0.9746 |
12 |
- |
0.7151 |
0.7378 |
0.7443 |
0.6680 |
0.7546 |
1.6244 |
20 |
0.6602 |
- |
- |
- |
- |
- |
1.9492 |
24 |
- |
0.7326 |
0.7533 |
0.7564 |
0.7037 |
0.7640 |
2.4365 |
30 |
0.4675 |
- |
- |
- |
- |
- |
2.9239 |
36 |
- |
0.7384 |
0.7575 |
0.7601 |
0.7086 |
0.7643 |
3.2487 |
40 |
0.3891 |
- |
- |
- |
- |
- |
3.8985 |
48 |
- |
0.7379 |
0.758 |
0.7601 |
0.7074 |
0.7649 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.1.2+cu121
- Accelerate: 0.32.1
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}