File size: 5,326 Bytes
ef2e4e4
 
 
 
efc2b31
 
 
e01caf6
 
 
 
ef2e4e4
 
 
 
 
 
 
e01caf6
 
 
 
 
 
 
 
 
 
 
 
 
 
5d76437
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
99dc9f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ef2e4e4
 
 
 
 
 
 
3e04807
 
 
ef2e4e4
62f9007
 
 
 
 
ef2e4e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62f9007
 
 
 
 
 
 
 
 
 
ef2e4e4
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
---
license: apache-2.0
tags:
- generated_from_trainer
- text-classification
- emotion
- pytorch
language:
- en
datasets:
- emotion
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: distilbert-base-cased-emotion
  results:
  - task:
      type: text-classification
      name: text-classification
    dataset:
      name: emotion
      type: emotion
      config: default
      split: validation
    metrics:
    - name: accuracy
      type: accuracy
      value: 0.9235
      verified: true
  - task:
      type: text-classification
      name: Text Classification
    dataset:
      name: emotion
      type: emotion
      config: default
      split: test
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.9235
      verified: true
    - name: Precision Macro
      type: precision
      value: 0.89608475565062
      verified: true
    - name: Precision Micro
      type: precision
      value: 0.9235
      verified: true
    - name: Precision Weighted
      type: precision
      value: 0.9224273416855945
      verified: true
    - name: Recall Macro
      type: recall
      value: 0.8581097243584549
      verified: true
    - name: Recall Micro
      type: recall
      value: 0.9235
      verified: true
    - name: Recall Weighted
      type: recall
      value: 0.9235
      verified: true
    - name: F1 Macro
      type: f1
      value: 0.8746813002250796
      verified: true
    - name: F1 Micro
      type: f1
      value: 0.9235
      verified: true
    - name: F1 Weighted
      type: f1
      value: 0.9217456925724525
      verified: true
    - name: loss
      type: loss
      value: 0.32714536786079407
      verified: true
  - task:
      type: text-classification
      name: Text Classification
    dataset:
      name: emotion
      type: emotion
      config: default
      split: validation
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.938
      verified: true
    - name: Precision Macro
      type: precision
      value: 0.9281100797474869
      verified: true
    - name: Precision Micro
      type: precision
      value: 0.938
      verified: true
    - name: Precision Weighted
      type: precision
      value: 0.9376891512759605
      verified: true
    - name: Recall Macro
      type: recall
      value: 0.9029821552608664
      verified: true
    - name: Recall Micro
      type: recall
      value: 0.938
      verified: true
    - name: Recall Weighted
      type: recall
      value: 0.938
      verified: true
    - name: F1 Macro
      type: f1
      value: 0.9147207975135915
      verified: true
    - name: F1 Micro
      type: f1
      value: 0.938
      verified: true
    - name: F1 Weighted
      type: f1
      value: 0.9373403463117288
      verified: true
    - name: loss
      type: loss
      value: 0.23682540655136108
      verified: true
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# distilbert-base-cased-emotion

**Training:** The model has been trained using the script provided in the following repository https://github.com/MorenoLaQuatra/transformers-tasks-templates

This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on [emotion](https://huggingface.co/datasets/emotion) dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3272
- Accuracy: 0.9235
- F1: 0.9217
- Precision: 0.9224
- Recall: 0.9235

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 10
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1     | Precision | Recall |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
| 0.2776        | 1.0   | 500  | 0.2954          | 0.9      | 0.8957 | 0.9031    | 0.9    |
| 0.1887        | 2.0   | 1000 | 0.1716          | 0.934    | 0.9344 | 0.9370    | 0.934  |
| 0.119         | 3.0   | 1500 | 0.1614          | 0.9345   | 0.9342 | 0.9377    | 0.9345 |
| 0.1001        | 4.0   | 2000 | 0.2018          | 0.936    | 0.9353 | 0.9359    | 0.936  |
| 0.0704        | 5.0   | 2500 | 0.1925          | 0.935    | 0.9349 | 0.9354    | 0.935  |
| 0.0471        | 6.0   | 3000 | 0.2369          | 0.938    | 0.9373 | 0.9377    | 0.938  |
| 0.0322        | 7.0   | 3500 | 0.2693          | 0.938    | 0.9382 | 0.9392    | 0.938  |
| 0.0137        | 8.0   | 4000 | 0.2926          | 0.937    | 0.9371 | 0.9372    | 0.937  |
| 0.0099        | 9.0   | 4500 | 0.2964          | 0.9365   | 0.9362 | 0.9362    | 0.9365 |
| 0.0114        | 10.0  | 5000 | 0.3044          | 0.935    | 0.9349 | 0.9350    | 0.935  |


### Framework versions

- Transformers 4.22.1
- Pytorch 1.11.0+cu113
- Datasets 2.0.0
- Tokenizers 0.11.6