|
import os |
|
import tiktoken |
|
|
|
from logging import getLogger |
|
from pathlib import Path |
|
from typing import ( |
|
cast, |
|
Tuple, |
|
Dict, |
|
Iterator, |
|
List, |
|
Union, |
|
Optional, |
|
) |
|
from shutil import copyfile |
|
import numpy as np |
|
from tiktoken.load import load_tiktoken_bpe |
|
from tokenizers import AddedToken |
|
from transformers import PreTrainedTokenizerFast |
|
from transformers.tokenization_utils import PreTrainedTokenizer |
|
from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode |
|
|
|
|
|
|
|
logger = getLogger(__name__) |
|
VOCAB_FILES_NAMES = {"vocab_file": "tiktoken.model"} |
|
SPIECE_UNDERLINE = "▁" |
|
|
|
class TikTokenTokenizer(PreTrainedTokenizer): |
|
""" |
|
Tokenizing and encoding/decoding text using the Tiktoken tokenizer. See megatron/tokenizer/tiktoken_tokenizer.py. |
|
|
|
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to |
|
this superclass for more information regarding those methods. |
|
|
|
Args: |
|
vocab_file (`str`): |
|
The path to the Tiktoken model file. |
|
bos_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<|begin_of_text|>",`): |
|
The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token. |
|
eos_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<|end_of_text|>"`): |
|
The end of sequence token. |
|
unk_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<|reserved_special_token_249|>"`): |
|
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this |
|
token instead. The second to last item in special_tokens. |
|
pad_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<|reserved_special_token_250|>"`): |
|
The token used for padding, for example when batching sequences of different lengths. |
|
additional_special_tokens (list of `str`, *optional*): |
|
A tuple or a list of additional tokens, which will be marked as `special`, meaning that they will be |
|
skipped when decoding if `skip_special_tokens` is set to `True`. |
|
""" |
|
|
|
vocab_files_names = VOCAB_FILES_NAMES |
|
|
|
model_input_names = ["input_ids", "attention_mask"] |
|
|
|
special_tokens: Dict[str, int] |
|
|
|
num_reserved_special_tokens = 256 |
|
|
|
pat_str = "|".join( |
|
[ |
|
r"""[\p{Han}]+""", |
|
r"""[^\r\n\p{L}\p{N}]?[\p{Lu}\p{Lt}\p{Lm}\p{Lo}\p{M}&&[^\p{Han}]]*[\p{Ll}\p{Lm}\p{Lo}\p{M}&&[^\p{Han}]]+(?i:'s|'t|'re|'ve|'m|'ll|'d)?""", |
|
r"""[^\r\n\p{L}\p{N}]?[\p{Lu}\p{Lt}\p{Lm}\p{Lo}\p{M}&&[^\p{Han}]]+[\p{Ll}\p{Lm}\p{Lo}\p{M}&&[^\p{Han}]]*(?i:'s|'t|'re|'ve|'m|'ll|'d)?""", |
|
r"""\p{N}{1,3}""", |
|
r""" ?[^\s\p{L}\p{N}]+[\r\n]*""", |
|
r"""\s*[\r\n]+""", |
|
r"""\s+(?!\S)""", |
|
r"""\s+""", |
|
] |
|
) |
|
|
|
def __init__( |
|
self, |
|
vocab_file, |
|
bos_token: Union[str, AddedToken]="[BOS]", |
|
eos_token: Union[str, AddedToken]="[EOS]", |
|
unk_token: Union[str, AddedToken]="[UNK]", |
|
pad_token: Union[str, AddedToken]="[PAD]", |
|
additional_special_tokens: Optional[List[str]] = None, |
|
added_tokens_decoder: Optional[dict] = None, |
|
**kwargs, |
|
): |
|
assert os.path.isfile(vocab_file), vocab_file |
|
if additional_special_tokens is None: |
|
additional_special_tokens = [ |
|
"<|im_end|>", |
|
"<|im_middle|>", |
|
"<|im_user|>", |
|
"<|im_assistant|>", |
|
"<|im_system|>" |
|
] |
|
special_tokens_mapping = {i: added_tokens_decoder[i].content for i in added_tokens_decoder} |
|
|
|
special_tokens = [str(bos_token), str(eos_token)] + additional_special_tokens + [str(unk_token), str(pad_token)] |
|
|
|
self.vocab_file = vocab_file |
|
mergeable_ranks = load_tiktoken_bpe(vocab_file) |
|
num_base_tokens = len(mergeable_ranks) |
|
self.special_tokens = { |
|
special_tokens_mapping.get(i, f"<|reserved_token_{i}|>"): i \ |
|
for i in range(num_base_tokens, num_base_tokens + self.num_reserved_special_tokens + 2) |
|
} |
|
|
|
self.model = tiktoken.Encoding( |
|
name=Path(vocab_file).name, |
|
pat_str=self.pat_str, |
|
mergeable_ranks=mergeable_ranks, |
|
special_tokens=self.special_tokens, |
|
) |
|
logger.info(f"Reloaded tiktoken model from {vocab_file}") |
|
|
|
self.n_words: int = self.model.n_vocab |
|
|
|
self.bos_id: int = self.special_tokens[str(bos_token)] |
|
self.eos_id: int = self.special_tokens[str(eos_token)] |
|
logger.info( |
|
f"#words: {self.n_words} - BOS ID: {self.bos_id} - EOS ID: {self.eos_id}" |
|
) |
|
|
|
self.pad_id: int = self.special_tokens[str(pad_token)] |
|
self.unk_id: int = self.special_tokens[str(unk_token)] |
|
|
|
self.byte_encoder = bytes_to_unicode() |
|
self.byte_decoder = {v: k for k, v in self.byte_encoder.items()} |
|
|
|
self.decoder = {} |
|
for i in range(self.n_words): |
|
|
|
decoding = ''.join([ |
|
self.byte_encoder[ord(char)] for char in |
|
self.model.decode_single_token_bytes(i).decode('latin-1') |
|
]) |
|
self.decoder[i] = decoding |
|
|
|
self.encoder = {} |
|
for i in range(self.n_words): |
|
if i in self.decoder: |
|
self.encoder[self.decoder[i]] = i |
|
|
|
super().__init__( |
|
bos_token=bos_token, |
|
eos_token=eos_token, |
|
unk_token=unk_token, |
|
pad_token=pad_token, |
|
additional_special_tokens=additional_special_tokens, |
|
**kwargs, |
|
) |
|
self.all_special_ids_set = set(self.all_special_ids) |
|
|
|
def encode( |
|
self, |
|
text: str, |
|
allow_special_tokens: bool = True, |
|
**kwargs |
|
) -> List[int]: |
|
""" |
|
Encodes a string into a list of token IDs. |
|
|
|
Args: |
|
text (str): The input string to be encoded. |
|
|
|
Returns: |
|
list[int]: A list of token IDs. |
|
""" |
|
|
|
|
|
if len(kwargs) > 0: |
|
return super().encode(text, **kwargs) |
|
|
|
assert type(text) is str |
|
|
|
|
|
|
|
TIKTOKEN_MAX_ENCODE_CHARS = 400_000 |
|
|
|
|
|
|
|
|
|
MAX_NO_WHITESPACES_CHARS = 25_000 |
|
|
|
substrs = ( |
|
substr |
|
for i in range(0, len(text), TIKTOKEN_MAX_ENCODE_CHARS) |
|
for substr in self._split_whitespaces_or_nonwhitespaces( |
|
text[i : i + TIKTOKEN_MAX_ENCODE_CHARS], MAX_NO_WHITESPACES_CHARS |
|
) |
|
) |
|
t: List[int] = [] |
|
for substr in substrs: |
|
if allow_special_tokens: |
|
t.extend( |
|
|
|
self.model.encode( |
|
substr, |
|
allowed_special="all", |
|
) |
|
) |
|
else: |
|
t.extend( |
|
|
|
self.model.encode( |
|
substr, |
|
disallowed_special=(), |
|
) |
|
) |
|
return t |
|
|
|
def decode( |
|
self, |
|
token_ids: Union[int, List[int]], |
|
**kwargs |
|
) -> str: |
|
""" |
|
Decodes a list of token IDs into a string. |
|
|
|
Args: |
|
t (List[int]): The list of token IDs to be decoded. |
|
|
|
Returns: |
|
str: The decoded string. |
|
""" |
|
|
|
|
|
if len(kwargs) > 0: |
|
return super().decode(token_ids, **kwargs) |
|
|
|
if type(token_ids) is int: |
|
token_ids = [token_ids] |
|
|
|
return self.model.decode(cast(List[int], token_ids)) |
|
|
|
@staticmethod |
|
def _split_whitespaces_or_nonwhitespaces( |
|
s: str, max_consecutive_slice_len: int |
|
) -> Iterator[str]: |
|
""" |
|
Splits the string `s` so that each substring contains no more than `max_consecutive_slice_len` |
|
consecutive whitespaces or consecutive non-whitespaces. |
|
""" |
|
current_slice_len = 0 |
|
current_slice_is_space = s[0].isspace() if len(s) > 0 else False |
|
slice_start = 0 |
|
|
|
for i in range(len(s)): |
|
is_now_space = s[i].isspace() |
|
|
|
if current_slice_is_space ^ is_now_space: |
|
current_slice_len = 1 |
|
current_slice_is_space = is_now_space |
|
else: |
|
current_slice_len += 1 |
|
if current_slice_len > max_consecutive_slice_len: |
|
yield s[slice_start:i] |
|
slice_start = i |
|
current_slice_len = 1 |
|
yield s[slice_start:] |
|
|
|
|
|
""" ----- Below are the abstract methods required by PreTrainedTokenizer ----- """ |
|
@property |
|
def vocab_size(self) -> int: |
|
return self.n_words |
|
|
|
def get_vocab(self) -> Dict[str, int]: |
|
return self.encoder |
|
|
|
def _tokenize(self, text: str, **kwargs) -> List[str]: |
|
return [ |
|
self.decoder[t] |
|
for t in self.encode(text) |
|
] |
|
|
|
def _convert_token_to_id(self, token: str) -> int: |
|
return self.encoder.get(token, self.unk_id) |
|
|
|
def _convert_id_to_token(self, index: int) -> str: |
|
return self.decoder.get(index) |
|
|
|
@staticmethod |
|
def clean_up_tokenization(out_string: str) -> str: |
|
return out_string |
|
|
|
def convert_tokens_to_string(self, tokens: List[str]) -> str: |
|
text = ''.join(tokens).replace(SPIECE_UNDERLINE, '') |
|
text = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8', 'replace') |
|
return text |
|
|
|
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: |
|
if not os.path.isdir(save_directory): |
|
logger.error(f"Vocabulary path ({save_directory}) should be a directory") |
|
return |
|
out_vocab_file = os.path.join( |
|
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] |
|
) |
|
|
|
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file): |
|
copyfile(self.vocab_file, out_vocab_file) |
|
|
|
return (out_vocab_file,) |
|
|