Moonlight-16B-A3B-Instruct / tokenization_moonshot.py
liushaowei
first commit
391e7a8
import os
import tiktoken
from logging import getLogger
from pathlib import Path
from typing import (
cast,
Tuple,
Dict,
Iterator,
List,
Union,
Optional,
)
from shutil import copyfile
import numpy as np
from tiktoken.load import load_tiktoken_bpe
from tokenizers import AddedToken
from transformers import PreTrainedTokenizerFast
from transformers.tokenization_utils import PreTrainedTokenizer
from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
logger = getLogger(__name__)
VOCAB_FILES_NAMES = {"vocab_file": "tiktoken.model"}
SPIECE_UNDERLINE = "▁"
class TikTokenTokenizer(PreTrainedTokenizer):
"""
Tokenizing and encoding/decoding text using the Tiktoken tokenizer. See megatron/tokenizer/tiktoken_tokenizer.py.
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
this superclass for more information regarding those methods.
Args:
vocab_file (`str`):
The path to the Tiktoken model file.
bos_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<|begin_of_text|>",`):
The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
eos_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<|end_of_text|>"`):
The end of sequence token.
unk_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<|reserved_special_token_249|>"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead. The second to last item in special_tokens.
pad_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<|reserved_special_token_250|>"`):
The token used for padding, for example when batching sequences of different lengths.
additional_special_tokens (list of `str`, *optional*):
A tuple or a list of additional tokens, which will be marked as `special`, meaning that they will be
skipped when decoding if `skip_special_tokens` is set to `True`.
"""
vocab_files_names = VOCAB_FILES_NAMES
model_input_names = ["input_ids", "attention_mask"]
special_tokens: Dict[str, int]
num_reserved_special_tokens = 256
pat_str = "|".join(
[
r"""[\p{Han}]+""",
r"""[^\r\n\p{L}\p{N}]?[\p{Lu}\p{Lt}\p{Lm}\p{Lo}\p{M}&&[^\p{Han}]]*[\p{Ll}\p{Lm}\p{Lo}\p{M}&&[^\p{Han}]]+(?i:'s|'t|'re|'ve|'m|'ll|'d)?""",
r"""[^\r\n\p{L}\p{N}]?[\p{Lu}\p{Lt}\p{Lm}\p{Lo}\p{M}&&[^\p{Han}]]+[\p{Ll}\p{Lm}\p{Lo}\p{M}&&[^\p{Han}]]*(?i:'s|'t|'re|'ve|'m|'ll|'d)?""",
r"""\p{N}{1,3}""",
r""" ?[^\s\p{L}\p{N}]+[\r\n]*""",
r"""\s*[\r\n]+""",
r"""\s+(?!\S)""",
r"""\s+""",
]
)
def __init__(
self,
vocab_file,
bos_token: Union[str, AddedToken]="[BOS]",
eos_token: Union[str, AddedToken]="[EOS]",
unk_token: Union[str, AddedToken]="[UNK]",
pad_token: Union[str, AddedToken]="[PAD]",
additional_special_tokens: Optional[List[str]] = None,
added_tokens_decoder: Optional[dict] = None,
**kwargs,
):
assert os.path.isfile(vocab_file), vocab_file
if additional_special_tokens is None:
additional_special_tokens = [
"<|im_end|>",
"<|im_middle|>",
"<|im_user|>",
"<|im_assistant|>",
"<|im_system|>"
]
special_tokens_mapping = {i: added_tokens_decoder[i].content for i in added_tokens_decoder}
special_tokens = [str(bos_token), str(eos_token)] + additional_special_tokens + [str(unk_token), str(pad_token)]
self.vocab_file = vocab_file
mergeable_ranks = load_tiktoken_bpe(vocab_file)
num_base_tokens = len(mergeable_ranks)
self.special_tokens = {
special_tokens_mapping.get(i, f"<|reserved_token_{i}|>"): i \
for i in range(num_base_tokens, num_base_tokens + self.num_reserved_special_tokens + 2)
}
self.model = tiktoken.Encoding(
name=Path(vocab_file).name,
pat_str=self.pat_str,
mergeable_ranks=mergeable_ranks,
special_tokens=self.special_tokens,
)
logger.info(f"Reloaded tiktoken model from {vocab_file}")
self.n_words: int = self.model.n_vocab
# BOS / EOS token IDs
self.bos_id: int = self.special_tokens[str(bos_token)]
self.eos_id: int = self.special_tokens[str(eos_token)]
logger.info(
f"#words: {self.n_words} - BOS ID: {self.bos_id} - EOS ID: {self.eos_id}"
)
self.pad_id: int = self.special_tokens[str(pad_token)]
self.unk_id: int = self.special_tokens[str(unk_token)]
self.byte_encoder = bytes_to_unicode()
self.byte_decoder = {v: k for k, v in self.byte_encoder.items()}
self.decoder = {}
for i in range(self.n_words):
# Taken from https://gist.github.com/xenova/a452a6474428de0182b17605a98631ee
decoding = ''.join([
self.byte_encoder[ord(char)] for char in
self.model.decode_single_token_bytes(i).decode('latin-1')
])
self.decoder[i] = decoding
self.encoder = {}
for i in range(self.n_words):
if i in self.decoder:
self.encoder[self.decoder[i]] = i
super().__init__(
bos_token=bos_token,
eos_token=eos_token,
unk_token=unk_token,
pad_token=pad_token,
additional_special_tokens=additional_special_tokens,
**kwargs,
)
self.all_special_ids_set = set(self.all_special_ids)
def encode(
self,
text: str,
allow_special_tokens: bool = True,
**kwargs
) -> List[int]:
"""
Encodes a string into a list of token IDs.
Args:
text (str): The input string to be encoded.
Returns:
list[int]: A list of token IDs.
"""
# If there are other args, we should call super().encode because there are a lot of code
# to handle those args. supper().encode finally will call _tokenize and _convert_token_to_id.
if len(kwargs) > 0:
return super().encode(text, **kwargs)
assert type(text) is str
# The tiktoken tokenizer can handle <=400k chars without
# pyo3_runtime.PanicException.
TIKTOKEN_MAX_ENCODE_CHARS = 400_000
# https://github.com/openai/tiktoken/issues/195
# Here we iterate over subsequences and split if we exceed the limit
# of max consecutive non-whitespace or whitespace characters.
MAX_NO_WHITESPACES_CHARS = 25_000
substrs = (
substr
for i in range(0, len(text), TIKTOKEN_MAX_ENCODE_CHARS)
for substr in self._split_whitespaces_or_nonwhitespaces(
text[i : i + TIKTOKEN_MAX_ENCODE_CHARS], MAX_NO_WHITESPACES_CHARS
)
)
t: List[int] = []
for substr in substrs:
if allow_special_tokens:
t.extend(
# we should consider special token as a common token
self.model.encode(
substr,
allowed_special="all",
)
)
else:
t.extend(
# we should consider special token as a common token
self.model.encode(
substr,
disallowed_special=(),
)
)
return t
def decode(
self,
token_ids: Union[int, List[int]],
**kwargs
) -> str:
"""
Decodes a list of token IDs into a string.
Args:
t (List[int]): The list of token IDs to be decoded.
Returns:
str: The decoded string.
"""
# If there are other args, we should call super().decode because there are a lot of code
# to handle those args. supper().encode finally will call convert_tokens_to_string and _convert_id_to_token.
if len(kwargs) > 0:
return super().decode(token_ids, **kwargs)
if type(token_ids) is int:
token_ids = [token_ids]
return self.model.decode(cast(List[int], token_ids))
@staticmethod
def _split_whitespaces_or_nonwhitespaces(
s: str, max_consecutive_slice_len: int
) -> Iterator[str]:
"""
Splits the string `s` so that each substring contains no more than `max_consecutive_slice_len`
consecutive whitespaces or consecutive non-whitespaces.
"""
current_slice_len = 0
current_slice_is_space = s[0].isspace() if len(s) > 0 else False
slice_start = 0
for i in range(len(s)):
is_now_space = s[i].isspace()
if current_slice_is_space ^ is_now_space:
current_slice_len = 1
current_slice_is_space = is_now_space
else:
current_slice_len += 1
if current_slice_len > max_consecutive_slice_len:
yield s[slice_start:i]
slice_start = i
current_slice_len = 1
yield s[slice_start:]
""" ----- Below are the abstract methods required by PreTrainedTokenizer ----- """
@property
def vocab_size(self) -> int:
return self.n_words
def get_vocab(self) -> Dict[str, int]:
return self.encoder
def _tokenize(self, text: str, **kwargs) -> List[str]:
return [
self.decoder[t]
for t in self.encode(text)
]
def _convert_token_to_id(self, token: str) -> int:
return self.encoder.get(token, self.unk_id)
def _convert_id_to_token(self, index: int) -> str:
return self.decoder.get(index)
@staticmethod
def clean_up_tokenization(out_string: str) -> str:
return out_string
def convert_tokens_to_string(self, tokens: List[str]) -> str:
text = ''.join(tokens).replace(SPIECE_UNDERLINE, '')
text = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8', 'replace')
return text
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
if not os.path.isdir(save_directory):
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
return
out_vocab_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
)
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
copyfile(self.vocab_file, out_vocab_file)
return (out_vocab_file,)