moock's picture
End of training
23bc122
|
raw
history blame
3.02 kB
metadata
license: apache-2.0
base_model: microsoft/swinv2-tiny-patch4-window8-256
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: swinv2-tiny-patch4-window8-256-finetuned-gardner-icm-max
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.6428571428571429

swinv2-tiny-patch4-window8-256-finetuned-gardner-icm-max

This model is a fine-tuned version of microsoft/swinv2-tiny-patch4-window8-256 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0741
  • Accuracy: 0.6429

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.0925 0.94 11 1.0631 0.7952
0.9552 1.96 23 0.6336 0.7952
0.6566 2.98 35 0.5356 0.7952
0.5686 4.0 47 0.5150 0.7952
0.5703 4.94 58 0.5129 0.7952
0.5726 5.96 70 0.5154 0.7952
0.5482 6.98 82 0.5142 0.7952
0.568 8.0 94 0.5109 0.7952
0.5245 8.94 105 0.5134 0.7952
0.5979 9.96 117 0.5238 0.7952
0.5442 10.98 129 0.5076 0.7952
0.545 12.0 141 0.5062 0.7952
0.5514 12.94 152 0.5013 0.7952
0.5377 13.96 164 0.5045 0.7952
0.5282 14.98 176 0.5038 0.7952
0.5389 16.0 188 0.4994 0.7952
0.5039 16.94 199 0.4996 0.7952
0.5348 17.96 211 0.4940 0.7952
0.5426 18.72 220 0.4947 0.7952

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.1.2
  • Datasets 2.16.0
  • Tokenizers 0.15.0