PEFT
code
instruct
mistral
File size: 4,927 Bytes
866f213
bd1e77c
866f213
a9ac195
 
 
e556c0c
a9ac195
 
 
bd1e77c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
624be22
 
 
 
 
 
 
 
 
 
 
 
 
 
917fdfd
624be22
 
e556c0c
44cd309
624be22
 
 
 
e556c0c
 
624be22
 
 
996fab4
2df2e7e
 
624be22
 
 
 
 
 
 
e556c0c
624be22
e90aa87
 
 
b0de392
e90aa87
b0de392
bd1e77c
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
---
license: apache-2.0
library_name: peft
tags:
- code
- instruct
- mistral
datasets:
- HuggingFaceH4/no_robots
base_model: mistralai/Mistral-7B-v0.1
model-index:
- name: mistral_7b_norobots
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: acc_norm
      value: 58.96
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=qblocks/mistral_7b_norobots
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: acc_norm
      value: 80.57
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=qblocks/mistral_7b_norobots
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 57.66
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=qblocks/mistral_7b_norobots
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: mc2
      value: 41.91
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=qblocks/mistral_7b_norobots
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 75.61
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=qblocks/mistral_7b_norobots
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 38.36
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=qblocks/mistral_7b_norobots
      name: Open LLM Leaderboard
---

### Finetuning Overview:

**Model Used:** mistralai/Mistral-7B-v0.1 

**Dataset:** HuggingFaceH4/no_robots  

#### Dataset Insights:

[No Robots](https://huggingface.co/datasets/HuggingFaceH4/no_robots) is a high-quality dataset of 10,000 instructions and demonstrations created by skilled human annotators. This data can be used for supervised fine-tuning (SFT) to make language models follow instructions better.

#### Finetuning Details:

With the utilization of [MonsterAPI](https://monsterapi.ai)'s [no-code LLM finetuner](https://monsterapi.ai/finetuning), this finetuning:

- Was achieved with great cost-effectiveness.
- Completed in a total duration of 1h 15m 3s for 2 epochs using an A6000 48GB GPU.
- Costed `$2.525` for the entire 2 epochs.

#### Hyperparameters & Additional Details:

- **Epochs:** 2
- **Cost Per Epoch:** $1.26
- **Total Finetuning Cost:** $2.525
- **Model Path:** mistralai/Mistral-7B-v0.1
- **Learning Rate:** 0.0002
- **Data Split:** 100% train 
- **Gradient Accumulation Steps:** 64
- **lora r:** 64
- **lora alpha:** 16

#### Prompt Structure
```
<|system|> </s> <|user|> [USER PROMPT] </s> <|assistant|> [ASSISTANT ANSWER] </s>
```
#### Train loss :

![image/png](https://cdn-uploads.huggingface.co/production/uploads/63ba46aa0a9866b28cb19a14/Badi_wgZLBsUdeIScEKs9.png)

### Benchmarking results :


![image/png](https://cdn-uploads.huggingface.co/production/uploads/6313732454e6e5d9f0f797cd/ialM-cJygMgMgczskzicX.png)

---
license: apache-2.0
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_qblocks__mistral_7b_norobots)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |58.85|
|AI2 Reasoning Challenge (25-Shot)|58.96|
|HellaSwag (10-Shot)              |80.57|
|MMLU (5-Shot)                    |57.66|
|TruthfulQA (0-shot)              |41.91|
|Winogrande (5-shot)              |75.61|
|GSM8k (5-shot)                   |38.36|