PEFT
code
instruct
llama2
File size: 1,480 Bytes
4390f4c
c4a1d81
a35dad5
 
 
 
c4a1d81
0f60e61
f83c306
a35dad5
4390f4c
 
a35dad5
4390f4c
f83c306
c4a1d81
d67c2dd
4390f4c
a35dad5
 
d67c2dd
a42fc92
a35dad5
 
 
 
 
 
 
 
 
 
 
 
 
f83c306
a35dad5
 
 
02806bf
 
a35dad5
 
 
 
 
 
 
 
 
 
a42fc92
a35dad5
a42fc92
a35dad5
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
---
library_name: peft
tags:
- code
- instruct
- llama2
datasets: 
- HuggingFaceH4/no_robots  
base_model: meta-llama/Llama-2-7b-hf
license: apache-2.0
---

### Finetuning Overview:

**Model Used:** meta-llama/Llama-2-7b-hf

**Dataset:** HuggingFaceH4/no_robots  

#### Dataset Insights:

[No Robots](https://huggingface.co/datasets/HuggingFaceH4/no_robots) is a high-quality dataset of 10,000 instructions and demonstrations created by skilled human annotators. This data can be used for supervised fine-tuning (SFT) to make language models follow instructions better.

#### Finetuning Details:

With the utilization of [MonsterAPI](https://monsterapi.ai)'s [LLM finetuner](https://docs.monsterapi.ai/fine-tune-a-large-language-model-llm), this finetuning:

- Was achieved with great cost-effectiveness.
- Completed in a total duration of 39mins 4secs for 1 epoch using an A6000 48GB GPU.
- Costed `$1.313` for the entire epoch.

#### Hyperparameters & Additional Details:

- **Epochs:** 1
- **Cost Per Epoch:** $1.313
- **Total Finetuning Cost:** $1.313
- **Model Path:** meta-llama/Llama-2-7b-hf
- **Learning Rate:** 0.0002
- **Data Split:** 99% train 1% validation
- **Gradient Accumulation Steps:** 4
- **lora r:** 32
- **lora alpha:** 64

---
Prompt Structure
```
### INSTRUCTION:
[instruction]

### RESPONSE:
[text]
```
Train loss :

![eval loss](https://cdn-uploads.huggingface.co/production/uploads/63ba46aa0a9866b28cb19a14/D84FFl8hAorzJbtSfiiIT.png)

license: apache-2.0