File size: 1,494 Bytes
4ec8390 c1b46cb 5bcb3a4 4ec8390 c1b46cb 5bcb3a4 c1b46cb 5bcb3a4 c1b46cb 5bcb3a4 f11d88b 5bcb3a4 489013f 5bcb3a4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 |
---
library_name: peft
tags:
- code
- instruct
- falcon
datasets:
- HuggingFaceH4/no_robots
base_model: tiiuae/falcon-7b
license: apache-2.0
---
### Finetuning Overview:
**Model Used:** tiiuae/falcon-7b
**Dataset:** HuggingFaceH4/no_robots
#### Dataset Insights:
[No Robots](https://huggingface.co/datasets/HuggingFaceH4/no_robots) is a high-quality dataset of 10,000 instructions and demonstrations created by skilled human annotators. This data can be used for supervised fine-tuning (SFT) to make language models follow instructions better.
#### Finetuning Details:
With the utilization of [MonsterAPI](https://monsterapi.ai)'s [LLM finetuner](https://docs.monsterapi.ai/fine-tune-a-large-language-model-llm), this finetuning:
- Was achieved with great cost-effectiveness.
- Completed in a total duration of 1h 21m 21s for 3 epochs using an A6000 48GB GPU.
- Costed `$0.909` for 1 epoch.
#### Hyperparameters & Additional Details:
- **Epochs:** 3
- **Cost Per Epoch:** $0.909
- **Total Finetuning Cost:** $2.727
- **Model Path:** tiiuae/falcon-7b
- **Learning Rate:** 0.0002
- **Data Split:** 100% train
- **Gradient Accumulation Steps:** 4
- **lora r:** 32
- **lora alpha:** 64
#### Prompt Structure
```
<|system|> <|endoftext|> <|user|> [USER PROMPT]<|endoftext|> <|assistant|> [ASSISTANT ANSWER] <|endoftext|>
```
#### Train loss :
![image/png](https://cdn-uploads.huggingface.co/production/uploads/63ba46aa0a9866b28cb19a14/Bwh308-yqX6G33DS1LWLE.png)
license: apache-2.0 |