PEFT
code
instruct
code-llama
File size: 4,703 Bytes
388c9c5
8feecb9
388c9c5
600d701
 
 
 
 
91486d9
600d701
8feecb9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
388c9c5
 
600d701
388c9c5
600d701
388c9c5
91486d9
600d701
 
 
598ea48
600d701
 
 
 
 
 
91486d9
 
600d701
 
 
91486d9
 
600d701
 
 
598ea48
 
 
600d701
7a0aaba
c897d81
600d701
8feecb9
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
---
license: apache-2.0
library_name: peft
tags:
- code
- instruct
- code-llama
datasets:
- cognitivecomputations/dolphin-coder
base_model: codellama/CodeLlama-7b-hf
model-index:
- name: codellama_7b_DolphinCoder
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: acc_norm
      value: 41.98
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Zangs3011/codellama_7b_DolphinCoder
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: acc_norm
      value: 65.5
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Zangs3011/codellama_7b_DolphinCoder
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 38.11
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Zangs3011/codellama_7b_DolphinCoder
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: mc2
      value: 35.45
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Zangs3011/codellama_7b_DolphinCoder
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 63.61
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Zangs3011/codellama_7b_DolphinCoder
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 9.7
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Zangs3011/codellama_7b_DolphinCoder
      name: Open LLM Leaderboard
---

### Finetuning Overview:

**Model Used:** codellama/CodeLlama-7b-hf 

**Dataset:** cognitivecomputations/dolphin-coder 

#### Dataset Insights:

[Dolphin-Coder](https://huggingface.co/datasets/cognitivecomputations/dolphin-coder) dataset – a high-quality collection of 100,000+ coding questions and responses. It's perfect for supervised fine-tuning (SFT), and teaching language models to improve on coding-based tasks.

#### Finetuning Details:

With the utilization of [MonsterAPI](https://monsterapi.ai)'s [no-code LLM finetuner](https://monsterapi.ai/finetuning), this finetuning:

- Was achieved with great cost-effectiveness.
- Completed in a total duration of 15hr 31mins for 1 epochs using an A6000 48GB GPU.
- Costed `$31.31` for the entire 1 epoch.

#### Hyperparameters & Additional Details:

- **Epochs:** 1
- **Total Finetuning Cost:** $31.31
- **Model Path:** codellama/CodeLlama-7b-hf
- **Learning Rate:** 0.0002
- **Data Split:** 100% train 
- **Gradient Accumulation Steps:** 128
- **lora r:** 32
- **lora alpha:** 64

![Train Loss](https://cdn-uploads.huggingface.co/production/uploads/63ba46aa0a9866b28cb19a14/aNujXePogMlJZmoi1Bq56.png)

---
license: apache-2.0
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Zangs3011__codellama_7b_DolphinCoder)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |42.39|
|AI2 Reasoning Challenge (25-Shot)|41.98|
|HellaSwag (10-Shot)              |65.50|
|MMLU (5-Shot)                    |38.11|
|TruthfulQA (0-shot)              |35.45|
|Winogrande (5-shot)              |63.61|
|GSM8k (5-shot)                   | 9.70|