monai
medical
File size: 3,615 Bytes
c53e252
 
8cb4759
c53e252
8cb4759
117b3b6
50fe472
6ce2032
7cec656
c0b6224
d0252ec
2349c14
2c47f4e
94fec9f
bb86d85
dcde65e
4c7f4f9
c53e252
 
8cb4759
2c47f4e
 
c53e252
 
2c47f4e
 
c53e252
94fec9f
 
c53e252
 
 
 
 
 
 
 
 
7cec656
c53e252
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
{
    "schema": "https://github.com/Project-MONAI/MONAI-extra-test-data/releases/download/0.8.1/meta_schema_20220324.json",
    "version": "0.1.4",
    "changelog": {
        "0.1.4": "fix the wrong GPU index issue of multi-node",
        "0.1.3": "remove error dollar symbol in readme",
        "0.1.2": "add RAM warning",
        "0.1.1": "enable deterministic eval and inference",
        "0.1.0": "Update deterministic results",
        "0.0.9": "Update README Formatting",
        "0.0.8": "enable deterministic training",
        "0.0.7": "update benchmark on A100",
        "0.0.6": "adapt to BundleWorkflow interface",
        "0.0.5": "add name tag",
        "0.0.4": "Fix evaluation",
        "0.0.3": "Update to use MONAI 1.1.0",
        "0.0.2": "Update The Torch Vision Transform",
        "0.0.1": "initialize the model package structure"
    },
    "monai_version": "1.2.0",
    "pytorch_version": "1.13.1",
    "numpy_version": "1.22.2",
    "optional_packages_version": {
        "nibabel": "4.0.1",
        "pytorch-ignite": "0.4.9",
        "torchvision": "0.14.1"
    },
    "name": "Pathology nuclei classification",
    "task": "Pathology Nuclei classification",
    "description": "A pre-trained model for Nuclei Classification within Haematoxylin & Eosin stained histology images",
    "authors": "MONAI team",
    "copyright": "Copyright (c) MONAI Consortium",
    "data_source": "consep_dataset.zip from https://warwick.ac.uk/fac/cross_fac/tia/data/hovernet",
    "data_type": "png",
    "image_classes": "RGB channel data, intensity scaled to [0, 1]",
    "label_classes": "single channel data",
    "pred_classes": "4 channels OneHot data, channel 0 is Other, channel 1 is Inflammatory, channel 2 is Epithelial, channel 3 is Spindle-Shaped",
    "eval_metrics": {
        "f1_score": 0.852
    },
    "intended_use": "This is an example, not to be used for diagnostic purposes",
    "references": [
        "S. Graham, Q. D. Vu, S. E. A. Raza, A. Azam, Y-W. Tsang, J. T. Kwak and N. Rajpoot. \"HoVer-Net: Simultaneous Segmentation and Classification of Nuclei in Multi-Tissue Histology Images.\" Medical Image Analysis, Sept. 2019. https://doi.org/10.1016/j.media.2019.101563"
    ],
    "network_data_format": {
        "inputs": {
            "image": {
                "type": "magnitude",
                "format": "RGB",
                "modality": "regular",
                "num_channels": 4,
                "spatial_shape": [
                    128,
                    128
                ],
                "dtype": "float32",
                "value_range": [
                    0,
                    1
                ],
                "is_patch_data": false,
                "channel_def": {
                    "0": "R",
                    "1": "G",
                    "2": "B",
                    "3": "Mask"
                }
            }
        },
        "outputs": {
            "pred": {
                "type": "probabilities",
                "format": "classes",
                "num_channels": 4,
                "spatial_shape": [
                    1,
                    4
                ],
                "dtype": "float32",
                "value_range": [
                    0,
                    1,
                    2,
                    3
                ],
                "is_patch_data": false,
                "channel_def": {
                    "0": "Other",
                    "1": "Inflammatory",
                    "2": "Epithelial",
                    "3": "Spindle-Shaped"
                }
            }
        }
    }
}