File size: 8,346 Bytes
618f7d3 eb02ef9 618f7d3 57147d8 618f7d3 eb02ef9 618f7d3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 |
---
imports:
- "$import glob"
- "$import json"
- "$import os"
- "$import ignite"
- "$from scipy import ndimage"
input_channels: 1
output_classes: 3
arch_ckpt_path: "$@bundle_root + '/models/search_code_18590.pt'"
arch_ckpt: "$torch.load(@arch_ckpt_path, map_location=torch.device('cuda'))"
bundle_root: "/workspace/MONAI/model-zoo/models/pancreas_ct_dints_segmentation"
ckpt_dir: "$@bundle_root + '/models'"
output_dir: "$@bundle_root + '/eval'"
dataset_dir: "/workspace/data/msd/Task07_Pancreas"
data_list_file_path: "$@bundle_root + '/configs/dataset_0.json'"
train_datalist: "$monai.data.load_decathlon_datalist(@data_list_file_path, data_list_key='training',
base_dir=@dataset_dir)"
val_datalist: "$monai.data.load_decathlon_datalist(@data_list_file_path, data_list_key='validation',
base_dir=@dataset_dir)"
device: "$torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')"
dints_space:
_target_: monai.networks.nets.TopologyInstance
channel_mul: 1
num_blocks: 12
num_depths: 4
use_downsample: true
arch_code:
- "$@arch_ckpt['arch_code_a']"
- "$@arch_ckpt['arch_code_c']"
device: "$torch.device('cuda')"
network_def:
_target_: monai.networks.nets.DiNTS
dints_space: "@dints_space"
in_channels: "@input_channels"
num_classes: "@output_classes"
use_downsample: true
node_a: "$@arch_ckpt['node_a']"
network: "$@network_def.to(@device)"
loss:
_target_: DiceCELoss
include_background: false
to_onehot_y: true
softmax: true
squared_pred: true
batch: true
smooth_nr: 1.0e-05
smooth_dr: 1.0e-05
optimizer:
_target_: torch.optim.SGD
params: "$@network.parameters()"
momentum: 0.9
weight_decay: 4.0e-05
lr: 0.025
lr_scheduler:
_target_: torch.optim.lr_scheduler.StepLR
optimizer: "@optimizer"
step_size: 80
gamma: 0.5
image_key: image
label_key: label
val_interval: 10
train:
deterministic_transforms:
- _target_: LoadImaged
keys:
- "@image_key"
- "@label_key"
- _target_: EnsureChannelFirstd
keys:
- "@image_key"
- "@label_key"
- _target_: Orientationd
keys:
- "@image_key"
- "@label_key"
axcodes: RAS
- _target_: Spacingd
keys:
- "@image_key"
- "@label_key"
pixdim:
- 1
- 1
- 1
mode:
- bilinear
- nearest
align_corners:
- true
- true
- _target_: CastToTyped
keys: "@image_key"
dtype: "$torch.float32"
- _target_: ScaleIntensityRanged
keys: "@image_key"
a_min: -87
a_max: 199
b_min: 0
b_max: 1
clip: true
- _target_: CastToTyped
keys:
- "@image_key"
- "@label_key"
dtype:
- "$np.float16"
- "$np.uint8"
- _target_: CopyItemsd
keys: "@label_key"
times: 1
names:
- label4crop
- _target_: Lambdad
keys: label4crop
func: "$lambda x, s=@output_classes: np.concatenate(tuple([ndimage.binary_dilation((x==_k).astype(x.dtype),
iterations=48).astype(float) for _k in range(s)]), axis=0)"
overwrite: true
- _target_: EnsureTyped
keys:
- "@image_key"
- "@label_key"
- _target_: CastToTyped
keys: "@image_key"
dtype: "$torch.float32"
- _target_: SpatialPadd
keys:
- "@image_key"
- "@label_key"
- label4crop
spatial_size:
- 96
- 96
- 96
mode:
- reflect
- constant
- constant
random_transforms:
- _target_: RandCropByLabelClassesd
keys:
- "@image_key"
- "@label_key"
label_key: label4crop
num_classes: "@output_classes"
ratios: "$[1,] * @output_classes"
spatial_size:
- 96
- 96
- 96
num_samples: 1
- _target_: Lambdad
keys: label4crop
func: "$lambda x: 0"
- _target_: RandRotated
keys:
- "@image_key"
- "@label_key"
range_x: 0.3
range_y: 0.3
range_z: 0.3
mode:
- bilinear
- nearest
prob: 0.2
- _target_: RandZoomd
keys:
- "@image_key"
- "@label_key"
min_zoom: 0.8
max_zoom: 1.2
mode:
- trilinear
- nearest
align_corners:
- true
-
prob: 0.16
- _target_: RandGaussianSmoothd
keys: "@image_key"
sigma_x:
- 0.5
- 1.15
sigma_y:
- 0.5
- 1.15
sigma_z:
- 0.5
- 1.15
prob: 0.15
- _target_: RandScaleIntensityd
keys: "@image_key"
factors: 0.3
prob: 0.5
- _target_: RandShiftIntensityd
keys: "@image_key"
offsets: 0.1
prob: 0.5
- _target_: RandGaussianNoised
keys: "@image_key"
std: 0.01
prob: 0.15
- _target_: RandFlipd
keys:
- "@image_key"
- "@label_key"
spatial_axis: 0
prob: 0.5
- _target_: RandFlipd
keys:
- "@image_key"
- "@label_key"
spatial_axis: 1
prob: 0.5
- _target_: RandFlipd
keys:
- "@image_key"
- "@label_key"
spatial_axis: 2
prob: 0.5
- _target_: CastToTyped
keys:
- "@image_key"
- "@label_key"
dtype:
- "$torch.float32"
- "$torch.uint8"
- _target_: ToTensord
keys:
- "@image_key"
- "@label_key"
preprocessing:
_target_: Compose
transforms: "$@train#deterministic_transforms + @train#random_transforms"
dataset:
_target_: CacheDataset
data: "@train_datalist"
transform: "@train#preprocessing"
cache_rate: 0.125
num_workers: 4
dataloader:
_target_: DataLoader
dataset: "@train#dataset"
batch_size: 2
shuffle: true
num_workers: 4
inferer:
_target_: SimpleInferer
postprocessing:
_target_: Compose
transforms:
- _target_: Activationsd
keys: pred
softmax: true
- _target_: AsDiscreted
keys:
- pred
- label
argmax:
- true
- false
to_onehot: "@output_classes"
handlers:
- _target_: LrScheduleHandler
lr_scheduler: "@lr_scheduler"
print_lr: true
- _target_: ValidationHandler
validator: "@validate#evaluator"
epoch_level: true
interval: "@val_interval"
- _target_: StatsHandler
tag_name: train_loss
output_transform: "$monai.handlers.from_engine(['loss'], first=True)"
- _target_: TensorBoardStatsHandler
log_dir: "@output_dir"
tag_name: train_loss
output_transform: "$monai.handlers.from_engine(['loss'], first=True)"
key_metric:
train_accuracy:
_target_: ignite.metrics.Accuracy
output_transform: "$monai.handlers.from_engine(['pred', 'label'])"
trainer:
_target_: SupervisedTrainer
max_epochs: 400
device: "@device"
train_data_loader: "@train#dataloader"
network: "@network"
loss_function: "@loss"
optimizer: "@optimizer"
inferer: "@train#inferer"
postprocessing: "@train#postprocessing"
key_train_metric: "@train#key_metric"
train_handlers: "@train#handlers"
amp: true
validate:
preprocessing:
_target_: Compose
transforms: "%train#deterministic_transforms"
dataset:
_target_: CacheDataset
data: "@val_datalist"
transform: "@validate#preprocessing"
cache_rate: 0.125
dataloader:
_target_: DataLoader
dataset: "@validate#dataset"
batch_size: 1
shuffle: false
num_workers: 4
inferer:
_target_: SlidingWindowInferer
roi_size:
- 96
- 96
- 96
sw_batch_size: 6
overlap: 0.625
postprocessing: "%train#postprocessing"
handlers:
- _target_: StatsHandler
iteration_log: false
- _target_: TensorBoardStatsHandler
log_dir: "@output_dir"
iteration_log: false
- _target_: CheckpointSaver
save_dir: "@ckpt_dir"
save_dict:
model: "@network"
save_key_metric: true
key_metric_filename: model.pt
key_metric:
val_mean_dice:
_target_: MeanDice
include_background: false
output_transform: "$monai.handlers.from_engine(['pred', 'label'])"
additional_metrics:
val_accuracy:
_target_: ignite.metrics.Accuracy
output_transform: "$monai.handlers.from_engine(['pred', 'label'])"
evaluator:
_target_: SupervisedEvaluator
device: "@device"
val_data_loader: "@validate#dataloader"
network: "@network"
inferer: "@validate#inferer"
postprocessing: "@validate#postprocessing"
key_val_metric: "@validate#key_metric"
additional_metrics: "@validate#additional_metrics"
val_handlers: "@validate#handlers"
amp: true
training:
- "$monai.utils.set_determinism(seed=123)"
- "$setattr(torch.backends.cudnn, 'benchmark', True)"
- "$@train#trainer.run()"
|