monai
medical
File size: 8,346 Bytes
618f7d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb02ef9
618f7d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57147d8
618f7d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb02ef9
618f7d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
---
imports:
- "$import glob"
- "$import json"
- "$import os"
- "$import ignite"
- "$from scipy import ndimage"
input_channels: 1
output_classes: 3
arch_ckpt_path: "$@bundle_root + '/models/search_code_18590.pt'"
arch_ckpt: "$torch.load(@arch_ckpt_path, map_location=torch.device('cuda'))"
bundle_root: "/workspace/MONAI/model-zoo/models/pancreas_ct_dints_segmentation"
ckpt_dir: "$@bundle_root + '/models'"
output_dir: "$@bundle_root + '/eval'"
dataset_dir: "/workspace/data/msd/Task07_Pancreas"
data_list_file_path: "$@bundle_root + '/configs/dataset_0.json'"
train_datalist: "$monai.data.load_decathlon_datalist(@data_list_file_path, data_list_key='training',
  base_dir=@dataset_dir)"
val_datalist: "$monai.data.load_decathlon_datalist(@data_list_file_path, data_list_key='validation',
  base_dir=@dataset_dir)"
device: "$torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')"
dints_space:
  _target_: monai.networks.nets.TopologyInstance
  channel_mul: 1
  num_blocks: 12
  num_depths: 4
  use_downsample: true
  arch_code:
  - "$@arch_ckpt['arch_code_a']"
  - "$@arch_ckpt['arch_code_c']"
  device: "$torch.device('cuda')"
network_def:
  _target_: monai.networks.nets.DiNTS
  dints_space: "@dints_space"
  in_channels: "@input_channels"
  num_classes: "@output_classes"
  use_downsample: true
  node_a: "$@arch_ckpt['node_a']"
network: "$@network_def.to(@device)"
loss:
  _target_: DiceCELoss
  include_background: false
  to_onehot_y: true
  softmax: true
  squared_pred: true
  batch: true
  smooth_nr: 1.0e-05
  smooth_dr: 1.0e-05
optimizer:
  _target_: torch.optim.SGD
  params: "$@network.parameters()"
  momentum: 0.9
  weight_decay: 4.0e-05
  lr: 0.025
lr_scheduler:
  _target_: torch.optim.lr_scheduler.StepLR
  optimizer: "@optimizer"
  step_size: 80
  gamma: 0.5
image_key: image
label_key: label
val_interval: 10
train:
  deterministic_transforms:
  - _target_: LoadImaged
    keys:
    - "@image_key"
    - "@label_key"
  - _target_: EnsureChannelFirstd
    keys:
    - "@image_key"
    - "@label_key"
  - _target_: Orientationd
    keys:
    - "@image_key"
    - "@label_key"
    axcodes: RAS
  - _target_: Spacingd
    keys:
    - "@image_key"
    - "@label_key"
    pixdim:
    - 1
    - 1
    - 1
    mode:
    - bilinear
    - nearest
    align_corners:
    - true
    - true
  - _target_: CastToTyped
    keys: "@image_key"
    dtype: "$torch.float32"
  - _target_: ScaleIntensityRanged
    keys: "@image_key"
    a_min: -87
    a_max: 199
    b_min: 0
    b_max: 1
    clip: true
  - _target_: CastToTyped
    keys:
    - "@image_key"
    - "@label_key"
    dtype:
    - "$np.float16"
    - "$np.uint8"
  - _target_: CopyItemsd
    keys: "@label_key"
    times: 1
    names:
    - label4crop
  - _target_: Lambdad
    keys: label4crop
    func: "$lambda x, s=@output_classes: np.concatenate(tuple([ndimage.binary_dilation((x==_k).astype(x.dtype),
      iterations=48).astype(float) for _k in range(s)]), axis=0)"
    overwrite: true
  - _target_: EnsureTyped
    keys:
    - "@image_key"
    - "@label_key"
  - _target_: CastToTyped
    keys: "@image_key"
    dtype: "$torch.float32"
  - _target_: SpatialPadd
    keys:
    - "@image_key"
    - "@label_key"
    - label4crop
    spatial_size:
    - 96
    - 96
    - 96
    mode:
    - reflect
    - constant
    - constant
  random_transforms:
  - _target_: RandCropByLabelClassesd
    keys:
    - "@image_key"
    - "@label_key"
    label_key: label4crop
    num_classes: "@output_classes"
    ratios: "$[1,] * @output_classes"
    spatial_size:
    - 96
    - 96
    - 96
    num_samples: 1
  - _target_: Lambdad
    keys: label4crop
    func: "$lambda x: 0"
  - _target_: RandRotated
    keys:
    - "@image_key"
    - "@label_key"
    range_x: 0.3
    range_y: 0.3
    range_z: 0.3
    mode:
    - bilinear
    - nearest
    prob: 0.2
  - _target_: RandZoomd
    keys:
    - "@image_key"
    - "@label_key"
    min_zoom: 0.8
    max_zoom: 1.2
    mode:
    - trilinear
    - nearest
    align_corners:
    - true
    -
    prob: 0.16
  - _target_: RandGaussianSmoothd
    keys: "@image_key"
    sigma_x:
    - 0.5
    - 1.15
    sigma_y:
    - 0.5
    - 1.15
    sigma_z:
    - 0.5
    - 1.15
    prob: 0.15
  - _target_: RandScaleIntensityd
    keys: "@image_key"
    factors: 0.3
    prob: 0.5
  - _target_: RandShiftIntensityd
    keys: "@image_key"
    offsets: 0.1
    prob: 0.5
  - _target_: RandGaussianNoised
    keys: "@image_key"
    std: 0.01
    prob: 0.15
  - _target_: RandFlipd
    keys:
    - "@image_key"
    - "@label_key"
    spatial_axis: 0
    prob: 0.5
  - _target_: RandFlipd
    keys:
    - "@image_key"
    - "@label_key"
    spatial_axis: 1
    prob: 0.5
  - _target_: RandFlipd
    keys:
    - "@image_key"
    - "@label_key"
    spatial_axis: 2
    prob: 0.5
  - _target_: CastToTyped
    keys:
    - "@image_key"
    - "@label_key"
    dtype:
    - "$torch.float32"
    - "$torch.uint8"
  - _target_: ToTensord
    keys:
    - "@image_key"
    - "@label_key"
  preprocessing:
    _target_: Compose
    transforms: "$@train#deterministic_transforms + @train#random_transforms"
  dataset:
    _target_: CacheDataset
    data: "@train_datalist"
    transform: "@train#preprocessing"
    cache_rate: 0.125
    num_workers: 4
  dataloader:
    _target_: DataLoader
    dataset: "@train#dataset"
    batch_size: 2
    shuffle: true
    num_workers: 4
  inferer:
    _target_: SimpleInferer
  postprocessing:
    _target_: Compose
    transforms:
    - _target_: Activationsd
      keys: pred
      softmax: true
    - _target_: AsDiscreted
      keys:
      - pred
      - label
      argmax:
      - true
      - false
      to_onehot: "@output_classes"
  handlers:
  - _target_: LrScheduleHandler
    lr_scheduler: "@lr_scheduler"
    print_lr: true
  - _target_: ValidationHandler
    validator: "@validate#evaluator"
    epoch_level: true
    interval: "@val_interval"
  - _target_: StatsHandler
    tag_name: train_loss
    output_transform: "$monai.handlers.from_engine(['loss'], first=True)"
  - _target_: TensorBoardStatsHandler
    log_dir: "@output_dir"
    tag_name: train_loss
    output_transform: "$monai.handlers.from_engine(['loss'], first=True)"
  key_metric:
    train_accuracy:
      _target_: ignite.metrics.Accuracy
      output_transform: "$monai.handlers.from_engine(['pred', 'label'])"
  trainer:
    _target_: SupervisedTrainer
    max_epochs: 400
    device: "@device"
    train_data_loader: "@train#dataloader"
    network: "@network"
    loss_function: "@loss"
    optimizer: "@optimizer"
    inferer: "@train#inferer"
    postprocessing: "@train#postprocessing"
    key_train_metric: "@train#key_metric"
    train_handlers: "@train#handlers"
    amp: true
validate:
  preprocessing:
    _target_: Compose
    transforms: "%train#deterministic_transforms"
  dataset:
    _target_: CacheDataset
    data: "@val_datalist"
    transform: "@validate#preprocessing"
    cache_rate: 0.125
  dataloader:
    _target_: DataLoader
    dataset: "@validate#dataset"
    batch_size: 1
    shuffle: false
    num_workers: 4
  inferer:
    _target_: SlidingWindowInferer
    roi_size:
    - 96
    - 96
    - 96
    sw_batch_size: 6
    overlap: 0.625
  postprocessing: "%train#postprocessing"
  handlers:
  - _target_: StatsHandler
    iteration_log: false
  - _target_: TensorBoardStatsHandler
    log_dir: "@output_dir"
    iteration_log: false
  - _target_: CheckpointSaver
    save_dir: "@ckpt_dir"
    save_dict:
      model: "@network"
    save_key_metric: true
    key_metric_filename: model.pt
  key_metric:
    val_mean_dice:
      _target_: MeanDice
      include_background: false
      output_transform: "$monai.handlers.from_engine(['pred', 'label'])"
  additional_metrics:
    val_accuracy:
      _target_: ignite.metrics.Accuracy
      output_transform: "$monai.handlers.from_engine(['pred', 'label'])"
  evaluator:
    _target_: SupervisedEvaluator
    device: "@device"
    val_data_loader: "@validate#dataloader"
    network: "@network"
    inferer: "@validate#inferer"
    postprocessing: "@validate#postprocessing"
    key_val_metric: "@validate#key_metric"
    additional_metrics: "@validate#additional_metrics"
    val_handlers: "@validate#handlers"
    amp: true
training:
- "$monai.utils.set_determinism(seed=123)"
- "$setattr(torch.backends.cudnn, 'benchmark', True)"
- "$@train#trainer.run()"