monai
medical
File size: 3,599 Bytes
9384dae
 
c0c50b7
9384dae
c0c50b7
dd84920
9384dae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
{
    "schema": "https://github.com/Project-MONAI/MONAI-extra-test-data/releases/download/0.8.1/meta_schema_generator_ldm_20230507.json",
    "version": "1.0.2",
    "changelog": {
        "1.0.2": "unify dataset dir in different configs",
        "1.0.1": "update dependency, update trained model weights",
        "1.0.0": "Initial release"
    },
    "monai_version": "1.2.0rc5",
    "pytorch_version": "1.13.1",
    "numpy_version": "1.22.2",
    "optional_packages_version": {
        "nibabel": "5.1.0",
        "lpips": "0.1.4"
    },
    "name": "BraTS MRI image latent diffusion generation",
    "task": "BraTS MRI image synthesis",
    "description": "A generative model for creating 3D brain MRI from Gaussian noise based on BraTS dataset",
    "authors": "MONAI team",
    "copyright": "Copyright (c) MONAI Consortium",
    "data_source": "http://medicaldecathlon.com/",
    "data_type": "nibabel",
    "image_classes": "Flair brain MRI with 1.1x1.1x1.1 mm voxel size",
    "eval_metrics": {},
    "intended_use": "This is a research tool/prototype and not to be used clinically",
    "references": [],
    "autoencoder_data_format": {
        "inputs": {
            "image": {
                "type": "image",
                "format": "image",
                "num_channels": 1,
                "spatial_shape": [
                    112,
                    128,
                    80
                ],
                "dtype": "float32",
                "value_range": [
                    0,
                    1
                ],
                "is_patch_data": true
            }
        },
        "outputs": {
            "pred": {
                "type": "image",
                "format": "image",
                "num_channels": 1,
                "spatial_shape": [
                    112,
                    128,
                    80
                ],
                "dtype": "float32",
                "value_range": [
                    0,
                    1
                ],
                "is_patch_data": true,
                "channel_def": {
                    "0": "image"
                }
            }
        }
    },
    "generator_data_format": {
        "inputs": {
            "latent": {
                "type": "noise",
                "format": "image",
                "num_channels": 8,
                "spatial_shape": [
                    36,
                    44,
                    28
                ],
                "dtype": "float32",
                "value_range": [
                    0,
                    1
                ],
                "is_patch_data": true
            },
            "condition": {
                "type": "timesteps",
                "format": "timesteps",
                "num_channels": 1,
                "spatial_shape": [],
                "dtype": "long",
                "value_range": [
                    0,
                    1000
                ],
                "is_patch_data": false
            }
        },
        "outputs": {
            "pred": {
                "type": "feature",
                "format": "image",
                "num_channels": 8,
                "spatial_shape": [
                    36,
                    44,
                    28
                ],
                "dtype": "float32",
                "value_range": [
                    0,
                    1
                ],
                "is_patch_data": true,
                "channel_def": {
                    "0": "image"
                }
            }
        }
    }
}