File size: 2,182 Bytes
9384dae |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 |
# Copyright (c) MONAI Consortium
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
import torch
from generative.losses import PatchAdversarialLoss
intensity_loss = torch.nn.L1Loss()
adv_loss = PatchAdversarialLoss(criterion="least_squares")
adv_weight = 0.1
perceptual_weight = 0.1
# kl_weight: important hyper-parameter.
# If too large, decoder cannot recon good results from latent space.
# If too small, latent space will not be regularized enough for the diffusion model
kl_weight = 1e-7
def compute_kl_loss(z_mu, z_sigma):
kl_loss = 0.5 * torch.sum(z_mu.pow(2) + z_sigma.pow(2) - torch.log(z_sigma.pow(2)) - 1, dim=[1, 2, 3, 4])
return torch.sum(kl_loss) / kl_loss.shape[0]
def generator_loss(gen_images, real_images, z_mu, z_sigma, disc_net, loss_perceptual):
recons_loss = intensity_loss(gen_images, real_images)
kl_loss = compute_kl_loss(z_mu, z_sigma)
p_loss = loss_perceptual(gen_images.float(), real_images.float())
loss_g = recons_loss + kl_weight * kl_loss + perceptual_weight * p_loss
logits_fake = disc_net(gen_images)[-1]
generator_loss = adv_loss(logits_fake, target_is_real=True, for_discriminator=False)
loss_g = loss_g + adv_weight * generator_loss
return loss_g
def discriminator_loss(gen_images, real_images, disc_net):
logits_fake = disc_net(gen_images.contiguous().detach())[-1]
loss_d_fake = adv_loss(logits_fake, target_is_real=False, for_discriminator=True)
logits_real = disc_net(real_images.contiguous().detach())[-1]
loss_d_real = adv_loss(logits_real, target_is_real=True, for_discriminator=True)
discriminator_loss = (loss_d_fake + loss_d_real) * 0.5
loss_d = adv_weight * discriminator_loss
return loss_d
|