File size: 1,890 Bytes
aa34e43 8b3d9fb aa34e43 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 |
---
library_name: transformers
license: apache-2.0
base_model: openai/whisper-small
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: whisper-small-arabic-finetuned-on-halabi_daataset_no-diacritics-2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# whisper-small-arabic-finetuned-on-halabi_daataset_no-diacritics-2
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2181
- Wer: 0.2491
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 200
- training_steps: 1000
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-------:|:----:|:---------------:|:------:|
| 0.0426 | 3.5133 | 200 | 0.2065 | 0.2491 |
| 0.0069 | 7.0177 | 400 | 0.2383 | 0.2585 |
| 0.0021 | 10.5310 | 600 | 0.2496 | 0.2736 |
| 0.0007 | 14.0354 | 800 | 0.2582 | 0.2786 |
| 0.0006 | 17.5487 | 1000 | 0.2600 | 0.2765 |
### Framework versions
- Transformers 4.47.0.dev0
- Pytorch 2.5.1
- Datasets 3.1.0
- Tokenizers 0.20.3
|