File size: 9,003 Bytes
a69f683
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
import os
from pathlib import Path
from typing import Optional, Tuple

import numpy as np
import onnxruntime as onnxrt
import torch
from datasets import load_dataset
from transformers import (
    AutoConfig,
    AutoProcessor,
    GenerationConfig,
    WhisperForConditionalGeneration,
)
from transformers.modeling_outputs import BaseModelOutput, Seq2SeqLMOutput


os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"


model_name = "openai/whisper-tiny.en"
config = AutoConfig.from_pretrained(model_name)
processor = AutoProcessor.from_pretrained(model_name)

batch_size = 1
encoder_num_attention_heads = 6
decoder_num_attention_heads = 6
hidden_size = 384
encoder_sequence_length = 1500
decoder_max_length = 448
num_hidden_layers = 4

encoder_shape = (
    batch_size,
    encoder_num_attention_heads,
    encoder_sequence_length,
    hidden_size // encoder_num_attention_heads,
)
decoder_shape = (
    batch_size,
    decoder_num_attention_heads,
    decoder_max_length,
    hidden_size // decoder_num_attention_heads,
)


# load dataset
ds = load_dataset(
    "hf-internal-testing/librispeech_asr_dummy", "clean", split="validation"
)
idx = 4
inputs = processor.feature_extractor(ds[idx]["audio"]["array"], return_tensors="pt")
input_features = inputs.input_features


# onnx_model_path = "/home/ubuntu/optimum/output_whisper_smooth_quant_4_oct_static_testing"
onnx_model_path = ".\\whisper-tiny-static-shape-quantized-SL-448"
config_file = ".\\other_libs_qdq\\vaip_config_gemm_asr_decoder.json"
encoder_model_path = ".\\whisper-tiny-static-shape-quantized-SL-448\\encoder_model.onnx"
decoder_model_path = ".\\whisper-tiny-static-shape-quantized-SL-448\\decoder_model_quantized.onnx"

print(decoder_model_path)


class ORTEncoder(torch.nn.Module):
    def __init__(self):
        super().__init__()
        self.main_input_name = "input_features"
        self.session = onnxrt.InferenceSession(
            encoder_model_path, providers=["CPUExecutionProvider"]
        )
        self.output_names = {
            output_key.name: idx
            for idx, output_key in enumerate(self.session.get_outputs())
        }

    def forward(
        self,
        input_features: torch.FloatTensor,
        **kwargs,
    ) -> BaseModelOutput:
        onnx_inputs = {"input_features": input_features.cpu().detach().numpy()}

        # Run inference
        outputs = self.session.run(None, onnx_inputs)
        last_hidden_state = torch.from_numpy(
            outputs[self.output_names["last_hidden_state"]]
        )

        return BaseModelOutput(last_hidden_state=last_hidden_state)


class ORTDecoder(torch.nn.Module):
    def __init__(self):
        super().__init__()
        sess_options = onnxrt.SessionOptions()
        self.provider = "VitisAIExecutionProvider"
        self.provider_options = {"config_file": config_file}
        sess_options.graph_optimization_level = (
            onnxrt.GraphOptimizationLevel.ORT_DISABLE_ALL
        )
        sess_options.add_session_config_entry("session.disable_quant_qdq", "1")
        self.session = onnxrt.InferenceSession(
            decoder_model_path,
            providers=[self.provider],
            sess_options=sess_options,
            provider_options=[self.provider_options],
        )

        self.generation_config = GenerationConfig.from_model_config(config)
        self.max_length = decoder_max_length

        self.input_names = {
            input_key.name: idx
            for idx, input_key in enumerate(self.session.get_inputs())
        }
        self.output_names = {
            output_key.name: idx
            for idx, output_key in enumerate(self.session.get_outputs())
        }
        self.key_value_input_names = [
            key for key in self.input_names if (".key" in key) or (".value" in key)
        ]
        self.key_value_output_names = [
            key for key in self.output_names if (".key" in key) or (".value" in key)
        ]

        self.reset()

    def reset(self):
        # Set the start model inputs
        self.decoder_attention_mask = np.zeros((batch_size, self.max_length)).astype(
            np.int64
        )
        self.decoder_attention_mask[0, 0] = 1
        self.position_ids = np.array([[0]]).astype(np.int64)

        # Set the input / output names
        self.num_pkv = 4

    def prepare_pkv(self):
        decoder_key_value = torch.rand(*decoder_shape).to(torch.float32)
        encoder_key_value = torch.rand(*encoder_shape).to(torch.float32)

        past_key_values = []
        repeat_count = len(self.key_value_input_names) // 4
        past_key_values = tuple(
            (decoder_key_value, decoder_key_value, encoder_key_value, encoder_key_value)
            for _ in range(repeat_count)
        )

        return tuple(past_key_values)

    def forward(
        self,
        input_ids: torch.LongTensor,
        encoder_hidden_states: torch.FloatTensor,
        past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
    ) -> Seq2SeqLMOutput:
        if past_key_values is None:
            self.reset()

        if self.position_ids[0][0] == self.max_length:
            logits = torch.zeros((len(input_ids), 1, config.vocab_size))
            logits[:, :, config.eos_token_id] = 1

            return Seq2SeqLMOutput(logits=logits, past_key_values=past_key_values)

        onnx_inputs = {"input_ids": input_ids.cpu().detach().numpy()}

        onnx_inputs["position_ids"] = self.position_ids
        onnx_inputs["decoder_attention_mask"] = self.decoder_attention_mask
        onnx_inputs["encoder_hidden_states"] = (
            encoder_hidden_states.cpu().detach().numpy()
        )

        if self.position_ids[0][0] == 0:
            past_key_values = self.prepare_pkv()

        past_key_values = tuple(
            past_key_value
            for pkv_per_layer in past_key_values
            for past_key_value in pkv_per_layer
        )

        for input_name, past_key_value in zip(
            self.key_value_input_names, past_key_values
        ):
            onnx_inputs[input_name] = past_key_value.cpu().detach().numpy()

        # Run inference
        outputs = self.session.run(None, onnx_inputs)

        logits = torch.from_numpy(outputs[self.output_names["logits"]])

        out_past_key_values = tuple(
            torch.from_numpy(outputs[self.output_names[key]])
            for key in self.key_value_output_names
        )

        if self.position_ids[0][0] == 0:
            out_past_key_values = tuple(
                out_past_key_values[i : i + self.num_pkv]
                for i in range(0, len(out_past_key_values), self.num_pkv)
            )
        else:
            out_past_key_values = tuple(
                out_past_key_values[i : i + 2] + past_key_values[i + 2 : i + 4]
                for i in range(0, len(out_past_key_values), self.num_pkv)
            )

        if self.position_ids[0][0] < self.max_length - 1:
            self.decoder_attention_mask[:, self.position_ids[0][0] + 1] = 1
        self.position_ids += 1

        return Seq2SeqLMOutput(logits=logits, past_key_values=out_past_key_values)


class ORTModelForWhisper(WhisperForConditionalGeneration):
    def __init__(self, *args, **kwargs):
        config = AutoConfig.from_pretrained(model_name)
        super().__init__(config)

        self.encoder = ORTEncoder()
        self.decoder = ORTDecoder()

    def get_encoder(self):
        return self.encoder

    def forward(
        self,
        input_features: Optional[torch.FloatTensor] = None,
        decoder_input_ids: Optional[torch.LongTensor] = None,
        encoder_outputs: Optional[Tuple[Tuple[torch.Tensor]]] = None,
        past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
        **kwargs,
    ) -> Seq2SeqLMOutput:
        if encoder_outputs is None:
            encoder_outputs = self.encoder(input_features=input_features)

        # Decode
        decoder_outputs = self.decoder(
            input_ids=decoder_input_ids[:, -1:],
            encoder_hidden_states=encoder_outputs.last_hidden_state,
            past_key_values=past_key_values,
        )

        return Seq2SeqLMOutput(
            logits=decoder_outputs.logits,
            past_key_values=decoder_outputs.past_key_values,
        )

    def can_generate(self):
        return True

    def reset(self):
        self.decoder.reset()


model_ort = ORTModelForWhisper()
model = WhisperForConditionalGeneration.from_pretrained(model_name)


def test_ort():
    model = ORTModelForWhisper()

    generated_ids = model.generate(input_features)
    model_output = processor.tokenizer.batch_decode(
        generated_ids, skip_special_tokens=True
    )[0]

    print("ORT: ", model_output, generated_ids)


def test_original():
    model = WhisperForConditionalGeneration.from_pretrained(model_name)

    generated_ids = model.generate(input_features)
    model_output = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]

    print("Torch: ", model_output, generated_ids)


test_ort()