pythia410m-sft-tldr / code /generate_vllm.py
mnoukhov's picture
Training in progress, step 500
1904ee8 verified
import gc
import os
from dataclasses import dataclass, field
from typing import Dict, List, Optional
import torch
from datasets import Dataset, DatasetInfo, builder, load_dataset
from peft import AutoPeftModelForCausalLM, PeftModelForCausalLM
from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, TrainingArguments
from vllm import LLM, SamplingParams
from vllm.model_executor.parallel_utils.parallel_state import destroy_model_parallel
from trl import DPOTrainer
builder.has_sufficient_disk_space = lambda needed_bytes, directory=".": True
@dataclass
class ScriptArguments:
output_dir: Optional[str] = field(
default="compare_results",
metadata={"help": "output folder"},
)
num_gpus: Optional[int] = field(default=1)
model_name: Optional[str] = field(default="EleutherAI/pythia-410m", metadata={"help": "the model name"})
revision: Optional[str] = field(default="main", metadata={"help": "the model revision"})
tokenizer_name: Optional[str] = field(default=None, metadata={"help": "the tokenizer name"})
dataset_name: Optional[str] = field(
default="arianhosseini/openai_summarize_unlabelled", metadata={"help": "the dataset name"}
)
dataset_prompt_field: Optional[str] = field(default="query")
train_split: Optional[str] = field(default="train[:20]", metadata={"help": "the dataset name"})
batch_size: Optional[int] = field(default=4)
max_prompt_length: Optional[int] = field(default=512, metadata={"help": "Input sequence length"})
temperature: Optional[float] = field(default=0.7, metadata={"help": "Gen temperature"})
top_p: Optional[float] = field(default=1.0, metadata={"help": "Gen temperature"})
max_new_tokens: Optional[int] = field(default=48, metadata={"help": "max new tokens"})
dtype: Optional[str] = field(default="auto")
lora_model: Optional[bool] = field(default=False)
base_model_name: Optional[str] = field(default=None, metadata={"help": "the model name"})
base_model_revision: Optional[str] = field(default=None)
def prepare_vllm_model(script_args):
if script_args.tokenizer_name is not None:
tokenizer_name = script_args.tokenizer_name
else:
tokenizer_name = script_args.model_name
tokenizer = AutoTokenizer.from_pretrained(tokenizer_name)
if tokenizer_name.startswith("EleutherAI"):
tokenizer.add_special_tokens({"pad_token": "[PAD]"})
tokenizer.padding_side = "left"
if script_args.lora_model:
# peft model that needs to be merged
if script_args.base_model_name is not None:
base_model = AutoModelForCausalLM.from_pretrained(
script_args.base_model_name, revision=script_args.base_model_revision
)
# merge the model and save
model = PeftModelForCausalLM.from_pretrained(
base_model, script_args.model_name, revision=script_args.revision, device_map="cpu"
)
else:
model = AutoPeftModelForCausalLM.from_pretrained(
script_args.model_name, revision=script_args.revision, device_map="cpu"
)
merged = model.merge_and_unload()
model_save_path = f"/home/toolkit/trl_results/{script_args.model_name}_merged/{script_args.revision}"
merged.save_pretrained(model_save_path)
del model
del merged
model_name = model_save_path
revision = None
else:
model_name = script_args.model_name
revision = script_args.revision
llm = LLM(
model=model_name,
revision=revision,
dtype=script_args.dtype,
tokenizer=tokenizer_name,
tensor_parallel_size=script_args.num_gpus,
trust_remote_code=True,
)
llm.set_tokenizer(tokenizer)
return llm, tokenizer
def strip_prompt(examples):
examples["prompt"] = [prompt.strip() for prompt in examples["prompt"]]
return examples
def generate_vllm(script_args):
llm, _ = prepare_vllm_model(script_args)
dataset = load_dataset(script_args.dataset_name, split=script_args.train_split)
prompts = dataset[script_args.dataset_prompt_field]
sampling_params = SamplingParams(
temperature=script_args.temperature,
max_tokens=script_args.max_new_tokens,
top_p=script_args.top_p,
n=2,
)
generations = llm.generate(prompts, sampling_params)
print(f"generated {len(generations)} samples")
def dataset_generator():
for gen in generations:
if len(gen.outputs) == 2:
yield {
"prompt": gen.prompt,
"chosen": gen.outputs[0].text,
"rejected": gen.outputs[1].text,
}
else:
print("skipping gen, only 1 output")
ds_info = DatasetInfo(
f"{script_args.dataset_name} split {script_args.train_split} prompts used to generate with {script_args.model_name}"
f" temp {script_args.temperature} top_p {script_args.top_p} "
)
generated_dataset = Dataset.from_generator(dataset_generator, info=ds_info)
destroy_model_parallel()
del llm.llm_engine.driver_worker
del llm
gc.collect()
torch.cuda.empty_cache()
torch.distributed.destroy_process_group()
return generated_dataset
def relabel(script_args, dataset):
torch_dtype = script_args.dtype if script_args.dtype in ["auto", None] else getattr(torch, script_args.dtype)
if script_args.base_model_name is not None:
base_model = AutoModelForCausalLM.from_pretrained(
script_args.base_model_name,
revision=script_args.base_model_revision,
)
# merge the model and save
model = PeftModelForCausalLM.from_pretrained(
base_model,
script_args.model_name,
revision=script_args.revision,
torch_dtype=torch_dtype,
)
else:
model = AutoPeftModelForCausalLM.from_pretrained(
script_args.model_name,
revision=script_args.revision,
torch_dtype=torch_dtype,
)
if script_args.tokenizer_name is not None:
tokenizer_name = script_args.tokenizer_name
else:
tokenizer_name = script_args.model_name
tokenizer = AutoTokenizer.from_pretrained(tokenizer_name)
if tokenizer_name.startswith("EleutherAI"):
tokenizer.add_special_tokens({"pad_token": "[PAD]"})
training_args = TrainingArguments(per_device_eval_batch_size=int(script_args.batch_size), output_dir=".")
dpo_trainer = DPOTrainer(
model=model,
tokenizer=tokenizer,
args=training_args,
max_length=script_args.max_new_tokens + script_args.max_prompt_length,
max_target_length=script_args.max_new_tokens,
max_prompt_length=script_args.max_prompt_length,
)
def relabel_with_preds(batch: Dict[str, List]):
relabel_batch = {
"prompt": [],
"chosen": [],
"rejected": [],
"pred_chosen": [],
"pred_rejected": [],
}
for prompt, chosen, rejected, pred_chosen, pred_rejected in zip(
batch["prompt"],
batch["chosen"],
batch["rejected"],
batch["pred_chosen"],
batch["pred_rejected"],
):
relabel_batch["prompt"].append(prompt)
if pred_chosen >= pred_rejected:
relabel_batch["chosen"].append(chosen)
relabel_batch["rejected"].append(rejected)
relabel_batch["pred_chosen"].append(pred_chosen)
relabel_batch["pred_rejected"].append(pred_rejected)
else:
relabel_batch["chosen"].append(rejected)
relabel_batch["rejected"].append(chosen)
relabel_batch["pred_chosen"].append(pred_rejected)
relabel_batch["pred_rejected"].append(pred_chosen)
return relabel_batch
dpo_trainer.accelerator.print("Prediction")
preds, _, metrics = dpo_trainer.predict(dataset)
(
chosen_rewards,
rejected_rewards,
policy_chosen_logps,
policy_rejected_logps,
reference_chosen_logps,
reference_rejected_logps,
) = preds
dpo_trainer.accelerator.print(f"metrics {metrics}")
if dpo_trainer.accelerator.is_local_main_process:
print("Relabelling Dataset and Saving")
dataset = dataset.add_column("pred_chosen", chosen_rewards)
dataset = dataset.add_column("pred_rejected", rejected_rewards)
relabel_dataset = dataset.map(
relabel_with_preds,
batched=True,
)
description = f"{script_args.dataset_name} relabelled with {script_args.model_name}"
relabel_dataset._info.description = description
relabel_dataset.push_to_hub(os.path.basename(script_args.output_dir), split="train")
def generate_relabel_args_dict(args_dict):
parser = HfArgumentParser(ScriptArguments)
script_args = parser.parse_dict(args_dict)[0]
dataset = generate_vllm(script_args)
relabel(script_args, dataset)
if __name__ == "__main__":
parser = HfArgumentParser(ScriptArguments)
script_args = parser.parse_args_into_dataclasses()[0]
generate_vllm(script_args)