File size: 13,306 Bytes
01300dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
import gc
import os
import random
from dataclasses import dataclass, field
from typing import List, Optional

import pandas as pd
import torch
from datasets import builder, load_dataset
from huggingface_hub import list_repo_refs
from peft import PeftModelForCausalLM
from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser
from vllm import LLM, SamplingParams
from vllm.model_executor.parallel_utils.parallel_state import destroy_model_parallel

import wandb


builder.has_sufficient_disk_space = lambda needed_bytes, directory=".": True


@dataclass
class GenerateScriptArguments:
    output_dir: Optional[str] = field(
        default="/home/toolkit/trl_results",
        metadata={"help": "output folder"},
    )
    num_gpus: Optional[int] = field(default=1)
    base_model_name: Optional[str] = field(default=None, metadata={"help": "the model name"})
    base_model_revision: Optional[str] = field(default=None)
    model_name: Optional[str] = field(default="EleutherAI/pythia-410m", metadata={"help": "the model name"})
    model_revisions: Optional[List[str]] = field(default_factory=list)
    # base_model_revision: Optional[str] = field(default=None)
    tokenizer_name: Optional[str] = field(default=None, metadata={"help": "the tokenizer name"})
    dataset_name: Optional[str] = field(
        default="arianhosseini/openai_summarize_unlabelled", metadata={"help": "the dataset name"}
    )
    split: Optional[str] = field(default="validation", metadata={"help": "the dataset name"})
    batch_size: Optional[int] = field(default=4)
    seq_length: Optional[int] = field(default=512, metadata={"help": "Input sequence length"})

    temperature: Optional[float] = field(default=0.7, metadata={"help": "Gen temperature"})
    top_p: Optional[float] = field(default=1.0, metadata={"help": "Gen temperature"})
    max_new_tokens: Optional[int] = field(default=48, metadata={"help": "max new tokens"})
    gen_dtype: Optional[str] = field(default="auto")


@dataclass
class LLMJudgeArguments:
    wandb_log_id: Optional[str] = field(default=None)
    llm_judge_model_name: Optional[str] = field(default="EleutherAI/pythia-410m", metadata={"help": "the model name"})
    llm_judge_model_revision: Optional[str] = field(default=None)
    llm_judge_dtype: Optional[str] = field(default="auto")
    llm_judge_temperature: Optional[float] = field(default=0.7, metadata={"help": "Gen temperature"})
    llm_judge_top_p: Optional[float] = field(default=0.9, metadata={"help": "Gen temperature"})
    llm_judge_max_new_tokens: Optional[int] = field(default=None, metadata={"help": "max new tokens"})
    seed: Optional[int] = field(default=0)


OPTIONS = ["A", "B"]

TEMPLATE = """Which of the following summaries does a better job of summarizing the most important points in the given forum post, without including unimportant or irrelevant details? Judge based on accuracy, coverage, and coherence.

### Post:
{post}

### Summary A:
{response0}

### Summary B:
{response1}

### Instructions:
FIRST provide a one-sentence comparison of the two summaries, explaining which \
you prefer and why. SECOND, on a new line, state only "A" or "B" to indicate your choice. Your response should use the format:
Comparison: <one-sentence comparison and explanation>
Preferred: <"A" or "B">
"""


def generate(script_args):
    tokenizer_name = script_args.tokenizer_name if script_args.tokenizer_name is not None else script_args.model_name
    tokenizer = AutoTokenizer.from_pretrained(tokenizer_name)
    if tokenizer.pad_token is None:
        tokenizer.add_special_tokens({"pad_token": "[PAD]"})
    tokenizer.padding_side = "left"

    dataset = load_dataset(script_args.dataset_name, split=script_args.split)
    prompts = dataset["query"]

    sampling_params = SamplingParams(
        temperature=script_args.temperature,
        max_tokens=script_args.max_new_tokens,
        top_p=script_args.top_p,
        n=1,
    )

    refs = list_repo_refs(script_args.model_name, repo_type="model")
    gens = {}
    revisions = sorted([branch.name for branch in refs.branches])
    for revision in revisions:
        if revision == "main":
            continue

        if script_args.model_revisions and revision not in script_args.model_revisions:
            continue

        print(f"generating step {revision}")

        if script_args.base_model_name is None:
            # merged model
            model_name = script_args.model_name
            revision_name = revision
        else:
            # peft model that needs to be merged
            base_model = AutoModelForCausalLM.from_pretrained(
                script_args.base_model_name, revision=script_args.base_model_revision
            )
            # merge the model and save
            model = PeftModelForCausalLM.from_pretrained(
                base_model, script_args.model_name, revision=revision, device="cpu"
            )
            merged = model.merge_and_unload()
            model_save_path = f"/home/toolkit/trl_results/{script_args.model_name}_merged/{revision}"
            merged.save_pretrained(model_save_path)
            del model
            del merged
            model_name = model_save_path
            revision_name = revision
            revision = None

        llm = LLM(
            model=model_name,
            revision=revision,
            tokenizer=tokenizer_name,
            dtype=script_args.gen_dtype,
            max_model_len=script_args.seq_length,
            tensor_parallel_size=script_args.num_gpus,
            trust_remote_code=True,
        )

        llm.set_tokenizer(tokenizer)

        generations = llm.generate(prompts, sampling_params)

        texts = [output.outputs[0].text for output in generations]

        gens[revision_name] = texts

        dataset = dataset.add_column(f"generations_{revision_name}", texts)

        # delete old model
        destroy_model_parallel()
        del llm.llm_engine.driver_worker
        del llm
        gc.collect()
        torch.cuda.empty_cache()
        torch.distributed.destroy_process_group()

    if script_args.output_dir is not None:
        # TODO add hash to dataset path
        # sampling_str = str(sampling_params)
        # sampling_hash = hashlib.sha256(sampling_str.encode()).hexdigest()[:10]
        dataset_path = os.path.join(
            script_args.output_dir,
            script_args.dataset_name.replace("/", "_"),
            script_args.model_name.replace("/", "_"),
        )
        os.makedirs(dataset_path, exist_ok=True)
        dataset.save_to_disk(dataset_path)
        with open(f"{dataset_path}_sampling_params.txt", "w") as f:
            print(sampling_params, file=f)

    print(f"generated {len(gens)} steps")
    reference = []
    for ref_response in dataset["reference_response"]:
        if ref_response.endswith("<|endoftext|>"):
            ref_response = ref_response.split("<|endoftext|>")[0]

        reference.append(ref_response.strip())

    return prompts, reference, gens

    # ds_info = DatasetInfo(
    #     f"{script_args.dataset_name} split {script_args.train_split} prompts used to generate with {script_args.model_name}"
    #     f" temp {script_args.temperature} top_p {script_args.top_p} "
    # )
    # generated_dataset = Dataset.from_generator(dataset_generator, info=ds_info)
    # generated_dataset.push_to_hub(os.path.basename(script_args.output_dir), split="train")


def create_llm_judge_prompts(tokenizer, prompts, reference, generated, seed):
    llm_judge_prompts = []
    generated_indices = []
    random.seed(seed)
    for prompt, ref, gen in zip(prompts, reference, generated):
        generated_idx = random.randint(0, 1)
        if generated_idx == 0:
            response0 = gen.strip()
            response1 = ref.strip()
        else:
            response0 = ref.strip()
            response1 = gen.strip()

        query = TEMPLATE.format(post=prompt, response0=response0, response1=response1)
        messages = [
            {"role": "system", "content": "You are a helpful assistant."},
            {"role": "user", "content": query},
        ]
        formatted_prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
        llm_judge_prompts.append(formatted_prompt)
        generated_indices.append(generated_idx)

    return llm_judge_prompts, generated_indices


def llm_as_a_judge(args, prompts, reference, generations, model_name=None):
    if args.wandb_log_id is not None:
        # don't overwrite the wandb name of the original run
        if args.wandb_log_id == "model_name":
            # model name = config_wandblogid
            wandb_log_id = model_name.split("_")[-1]
        else:
            wandb_log_id = args.wandb_log_id

        os.environ.pop("WANDB_NAME")
        # original_name = wandb_name.removeprefix("geneval_")
        wandb.init(id=wandb_log_id, resume="allow")
        log_to_wandb = True
        print(f"Logging to WandB {wandb_log_id}")
    else:
        log_to_wandb = False

    llm = LLM(
        model=args.llm_judge_model_name,
        revision=args.llm_judge_model_revision,
        dtype=args.llm_judge_dtype,
        tensor_parallel_size=args.num_gpus,
        trust_remote_code=True,
    )

    tokenizer = llm.get_tokenizer()

    sampling_params = SamplingParams(
        temperature=args.llm_judge_temperature,
        max_tokens=args.llm_judge_max_new_tokens,
        top_p=args.llm_judge_top_p,
        n=1,
        stop_token_ids=[tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids("<|eot_id|>")],
    )

    ## get reference continuation rewards
    step = 0
    for step_str, generated in generations.items():
        print(f"Evaluating {step_str}")
        llm_judge_prompts, generated_indices = create_llm_judge_prompts(
            tokenizer, prompts, reference, generated, args.seed
        )
        llm_judge_output = llm.generate(llm_judge_prompts, sampling_params)
        llm_judge_texts = [output.outputs[0].text for output in llm_judge_output]

        comparisons, preferred = [], []
        for llm_judge_completion in llm_judge_texts:
            if "Comparison:" in llm_judge_completion:
                comparisons.append(llm_judge_completion.split("Comparison:")[1].split("Preferred:")[0].strip())
            else:
                comparisons.append("")

            if "Preferred:" in llm_judge_completion:
                preferred.append(llm_judge_completion.split("Preferred:")[1].strip())
            else:
                preferred.append("X")

        full_convo = [prompt + text for prompt, text in zip(llm_judge_prompts, llm_judge_texts)]

        winner = []
        win_sum = 0
        num_fails = 0
        for pref, gen_idx in zip(preferred, generated_indices):
            if pref == OPTIONS[gen_idx]:
                winner.append("ours")
                win_sum += 1
            elif pref == OPTIONS[1 - gen_idx]:
                winner.append("reference")
            else:
                winner.append("fail")
                num_fails += 1

        win_rate = win_sum / (len(preferred) - num_fails)
        if num_fails > 0:
            print(f"Failed to get preference from {num_fails} examples out of {len(preferred)}")

        if step_str.startswith("step"):
            step_str = step_str.removeprefix("step")

        if step_str.isdigit():
            step = int(step_str)
        else:
            print(f"Warning step name {step_str} is not an integer")
            step = step + 1

        if log_to_wandb:
            wandb.log(
                {
                    "llm_judge/win_rate": win_rate,
                    "train/global_step": step,
                }
            )

        print(f"step {step}: win-rate {win_rate}")

        if args.output_dir is not None:
            df = pd.DataFrame(
                {
                    "prompt": prompts,
                    "reference": reference,
                    "generated": generated,
                    "winner": winner,
                    "llm_prompt": llm_judge_prompts,
                    "full_conov": full_convo,
                    "generated_idx": generated_indices,
                }
            )
            df.to_csv(os.path.join(args.output_dir, f"step{step}.csv"))


def main(generate_args, eval_args):
    eval_args.num_gpus = generate_args.num_gpus
    eval_args.output_dir = generate_args.output_dir

    print("GENERATING")
    prompts, reference, generations = generate(generate_args)
    # dataset = load_dataset(generate_args.dataset_name, split=generate_args.split)
    # generations = {"step0": dataset["query_reference_response"]}
    # prompts = dataset["query"]
    # reference = dataset["reference_response"]
    # generations = {"step0": dataset["reference_response"]}
    print("EVALUATING")
    llm_as_a_judge(eval_args, prompts, reference, generations, generate_args.model_name)


def main_args_dict(args_dict):
    parser = HfArgumentParser([GenerateScriptArguments, LLMJudgeArguments])
    generate_args, eval_args = parser.parse_dict(args_dict)
    main(generate_args, eval_args)


if __name__ == "__main__":
    parser = HfArgumentParser([GenerateScriptArguments, LLMJudgeArguments])
    generate_args, eval_args = parser.parse_args_into_dataclasses()
    main(generate_args, eval_args)