File size: 13,306 Bytes
01300dd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 |
import gc
import os
import random
from dataclasses import dataclass, field
from typing import List, Optional
import pandas as pd
import torch
from datasets import builder, load_dataset
from huggingface_hub import list_repo_refs
from peft import PeftModelForCausalLM
from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser
from vllm import LLM, SamplingParams
from vllm.model_executor.parallel_utils.parallel_state import destroy_model_parallel
import wandb
builder.has_sufficient_disk_space = lambda needed_bytes, directory=".": True
@dataclass
class GenerateScriptArguments:
output_dir: Optional[str] = field(
default="/home/toolkit/trl_results",
metadata={"help": "output folder"},
)
num_gpus: Optional[int] = field(default=1)
base_model_name: Optional[str] = field(default=None, metadata={"help": "the model name"})
base_model_revision: Optional[str] = field(default=None)
model_name: Optional[str] = field(default="EleutherAI/pythia-410m", metadata={"help": "the model name"})
model_revisions: Optional[List[str]] = field(default_factory=list)
# base_model_revision: Optional[str] = field(default=None)
tokenizer_name: Optional[str] = field(default=None, metadata={"help": "the tokenizer name"})
dataset_name: Optional[str] = field(
default="arianhosseini/openai_summarize_unlabelled", metadata={"help": "the dataset name"}
)
split: Optional[str] = field(default="validation", metadata={"help": "the dataset name"})
batch_size: Optional[int] = field(default=4)
seq_length: Optional[int] = field(default=512, metadata={"help": "Input sequence length"})
temperature: Optional[float] = field(default=0.7, metadata={"help": "Gen temperature"})
top_p: Optional[float] = field(default=1.0, metadata={"help": "Gen temperature"})
max_new_tokens: Optional[int] = field(default=48, metadata={"help": "max new tokens"})
gen_dtype: Optional[str] = field(default="auto")
@dataclass
class LLMJudgeArguments:
wandb_log_id: Optional[str] = field(default=None)
llm_judge_model_name: Optional[str] = field(default="EleutherAI/pythia-410m", metadata={"help": "the model name"})
llm_judge_model_revision: Optional[str] = field(default=None)
llm_judge_dtype: Optional[str] = field(default="auto")
llm_judge_temperature: Optional[float] = field(default=0.7, metadata={"help": "Gen temperature"})
llm_judge_top_p: Optional[float] = field(default=0.9, metadata={"help": "Gen temperature"})
llm_judge_max_new_tokens: Optional[int] = field(default=None, metadata={"help": "max new tokens"})
seed: Optional[int] = field(default=0)
OPTIONS = ["A", "B"]
TEMPLATE = """Which of the following summaries does a better job of summarizing the most important points in the given forum post, without including unimportant or irrelevant details? Judge based on accuracy, coverage, and coherence.
### Post:
{post}
### Summary A:
{response0}
### Summary B:
{response1}
### Instructions:
FIRST provide a one-sentence comparison of the two summaries, explaining which \
you prefer and why. SECOND, on a new line, state only "A" or "B" to indicate your choice. Your response should use the format:
Comparison: <one-sentence comparison and explanation>
Preferred: <"A" or "B">
"""
def generate(script_args):
tokenizer_name = script_args.tokenizer_name if script_args.tokenizer_name is not None else script_args.model_name
tokenizer = AutoTokenizer.from_pretrained(tokenizer_name)
if tokenizer.pad_token is None:
tokenizer.add_special_tokens({"pad_token": "[PAD]"})
tokenizer.padding_side = "left"
dataset = load_dataset(script_args.dataset_name, split=script_args.split)
prompts = dataset["query"]
sampling_params = SamplingParams(
temperature=script_args.temperature,
max_tokens=script_args.max_new_tokens,
top_p=script_args.top_p,
n=1,
)
refs = list_repo_refs(script_args.model_name, repo_type="model")
gens = {}
revisions = sorted([branch.name for branch in refs.branches])
for revision in revisions:
if revision == "main":
continue
if script_args.model_revisions and revision not in script_args.model_revisions:
continue
print(f"generating step {revision}")
if script_args.base_model_name is None:
# merged model
model_name = script_args.model_name
revision_name = revision
else:
# peft model that needs to be merged
base_model = AutoModelForCausalLM.from_pretrained(
script_args.base_model_name, revision=script_args.base_model_revision
)
# merge the model and save
model = PeftModelForCausalLM.from_pretrained(
base_model, script_args.model_name, revision=revision, device="cpu"
)
merged = model.merge_and_unload()
model_save_path = f"/home/toolkit/trl_results/{script_args.model_name}_merged/{revision}"
merged.save_pretrained(model_save_path)
del model
del merged
model_name = model_save_path
revision_name = revision
revision = None
llm = LLM(
model=model_name,
revision=revision,
tokenizer=tokenizer_name,
dtype=script_args.gen_dtype,
max_model_len=script_args.seq_length,
tensor_parallel_size=script_args.num_gpus,
trust_remote_code=True,
)
llm.set_tokenizer(tokenizer)
generations = llm.generate(prompts, sampling_params)
texts = [output.outputs[0].text for output in generations]
gens[revision_name] = texts
dataset = dataset.add_column(f"generations_{revision_name}", texts)
# delete old model
destroy_model_parallel()
del llm.llm_engine.driver_worker
del llm
gc.collect()
torch.cuda.empty_cache()
torch.distributed.destroy_process_group()
if script_args.output_dir is not None:
# TODO add hash to dataset path
# sampling_str = str(sampling_params)
# sampling_hash = hashlib.sha256(sampling_str.encode()).hexdigest()[:10]
dataset_path = os.path.join(
script_args.output_dir,
script_args.dataset_name.replace("/", "_"),
script_args.model_name.replace("/", "_"),
)
os.makedirs(dataset_path, exist_ok=True)
dataset.save_to_disk(dataset_path)
with open(f"{dataset_path}_sampling_params.txt", "w") as f:
print(sampling_params, file=f)
print(f"generated {len(gens)} steps")
reference = []
for ref_response in dataset["reference_response"]:
if ref_response.endswith("<|endoftext|>"):
ref_response = ref_response.split("<|endoftext|>")[0]
reference.append(ref_response.strip())
return prompts, reference, gens
# ds_info = DatasetInfo(
# f"{script_args.dataset_name} split {script_args.train_split} prompts used to generate with {script_args.model_name}"
# f" temp {script_args.temperature} top_p {script_args.top_p} "
# )
# generated_dataset = Dataset.from_generator(dataset_generator, info=ds_info)
# generated_dataset.push_to_hub(os.path.basename(script_args.output_dir), split="train")
def create_llm_judge_prompts(tokenizer, prompts, reference, generated, seed):
llm_judge_prompts = []
generated_indices = []
random.seed(seed)
for prompt, ref, gen in zip(prompts, reference, generated):
generated_idx = random.randint(0, 1)
if generated_idx == 0:
response0 = gen.strip()
response1 = ref.strip()
else:
response0 = ref.strip()
response1 = gen.strip()
query = TEMPLATE.format(post=prompt, response0=response0, response1=response1)
messages = [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": query},
]
formatted_prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
llm_judge_prompts.append(formatted_prompt)
generated_indices.append(generated_idx)
return llm_judge_prompts, generated_indices
def llm_as_a_judge(args, prompts, reference, generations, model_name=None):
if args.wandb_log_id is not None:
# don't overwrite the wandb name of the original run
if args.wandb_log_id == "model_name":
# model name = config_wandblogid
wandb_log_id = model_name.split("_")[-1]
else:
wandb_log_id = args.wandb_log_id
os.environ.pop("WANDB_NAME")
# original_name = wandb_name.removeprefix("geneval_")
wandb.init(id=wandb_log_id, resume="allow")
log_to_wandb = True
print(f"Logging to WandB {wandb_log_id}")
else:
log_to_wandb = False
llm = LLM(
model=args.llm_judge_model_name,
revision=args.llm_judge_model_revision,
dtype=args.llm_judge_dtype,
tensor_parallel_size=args.num_gpus,
trust_remote_code=True,
)
tokenizer = llm.get_tokenizer()
sampling_params = SamplingParams(
temperature=args.llm_judge_temperature,
max_tokens=args.llm_judge_max_new_tokens,
top_p=args.llm_judge_top_p,
n=1,
stop_token_ids=[tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids("<|eot_id|>")],
)
## get reference continuation rewards
step = 0
for step_str, generated in generations.items():
print(f"Evaluating {step_str}")
llm_judge_prompts, generated_indices = create_llm_judge_prompts(
tokenizer, prompts, reference, generated, args.seed
)
llm_judge_output = llm.generate(llm_judge_prompts, sampling_params)
llm_judge_texts = [output.outputs[0].text for output in llm_judge_output]
comparisons, preferred = [], []
for llm_judge_completion in llm_judge_texts:
if "Comparison:" in llm_judge_completion:
comparisons.append(llm_judge_completion.split("Comparison:")[1].split("Preferred:")[0].strip())
else:
comparisons.append("")
if "Preferred:" in llm_judge_completion:
preferred.append(llm_judge_completion.split("Preferred:")[1].strip())
else:
preferred.append("X")
full_convo = [prompt + text for prompt, text in zip(llm_judge_prompts, llm_judge_texts)]
winner = []
win_sum = 0
num_fails = 0
for pref, gen_idx in zip(preferred, generated_indices):
if pref == OPTIONS[gen_idx]:
winner.append("ours")
win_sum += 1
elif pref == OPTIONS[1 - gen_idx]:
winner.append("reference")
else:
winner.append("fail")
num_fails += 1
win_rate = win_sum / (len(preferred) - num_fails)
if num_fails > 0:
print(f"Failed to get preference from {num_fails} examples out of {len(preferred)}")
if step_str.startswith("step"):
step_str = step_str.removeprefix("step")
if step_str.isdigit():
step = int(step_str)
else:
print(f"Warning step name {step_str} is not an integer")
step = step + 1
if log_to_wandb:
wandb.log(
{
"llm_judge/win_rate": win_rate,
"train/global_step": step,
}
)
print(f"step {step}: win-rate {win_rate}")
if args.output_dir is not None:
df = pd.DataFrame(
{
"prompt": prompts,
"reference": reference,
"generated": generated,
"winner": winner,
"llm_prompt": llm_judge_prompts,
"full_conov": full_convo,
"generated_idx": generated_indices,
}
)
df.to_csv(os.path.join(args.output_dir, f"step{step}.csv"))
def main(generate_args, eval_args):
eval_args.num_gpus = generate_args.num_gpus
eval_args.output_dir = generate_args.output_dir
print("GENERATING")
prompts, reference, generations = generate(generate_args)
# dataset = load_dataset(generate_args.dataset_name, split=generate_args.split)
# generations = {"step0": dataset["query_reference_response"]}
# prompts = dataset["query"]
# reference = dataset["reference_response"]
# generations = {"step0": dataset["reference_response"]}
print("EVALUATING")
llm_as_a_judge(eval_args, prompts, reference, generations, generate_args.model_name)
def main_args_dict(args_dict):
parser = HfArgumentParser([GenerateScriptArguments, LLMJudgeArguments])
generate_args, eval_args = parser.parse_dict(args_dict)
main(generate_args, eval_args)
if __name__ == "__main__":
parser = HfArgumentParser([GenerateScriptArguments, LLMJudgeArguments])
generate_args, eval_args = parser.parse_args_into_dataclasses()
main(generate_args, eval_args)
|