File size: 2,388 Bytes
fe1475c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
---
license: mit
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: roberta-finetuned-WebClassification-v2-smalllinguaMultiv2
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# roberta-finetuned-WebClassification-v2-smalllinguaMultiv2

This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0950
- Accuracy: 0.7742
- F1: 0.7742
- Precision: 0.7742
- Recall: 0.7742

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1     | Precision | Recall |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
| No log        | 1.0   | 48   | 2.8245          | 0.2796   | 0.2796 | 0.2796    | 0.2796 |
| No log        | 2.0   | 96   | 2.2338          | 0.4301   | 0.4301 | 0.4301    | 0.4301 |
| No log        | 3.0   | 144  | 1.9060          | 0.5269   | 0.5269 | 0.5269    | 0.5269 |
| No log        | 4.0   | 192  | 1.5349          | 0.6022   | 0.6022 | 0.6022    | 0.6022 |
| No log        | 5.0   | 240  | 1.4208          | 0.6882   | 0.6882 | 0.6882    | 0.6882 |
| No log        | 6.0   | 288  | 1.3330          | 0.7204   | 0.7204 | 0.7204    | 0.7204 |
| No log        | 7.0   | 336  | 1.2037          | 0.7097   | 0.7097 | 0.7097    | 0.7097 |
| No log        | 8.0   | 384  | 1.1414          | 0.7419   | 0.7419 | 0.7419    | 0.7419 |
| No log        | 9.0   | 432  | 1.0950          | 0.7742   | 0.7742 | 0.7742    | 0.7742 |
| No log        | 10.0  | 480  | 1.0883          | 0.7634   | 0.7634 | 0.7634    | 0.7634 |


### Framework versions

- Transformers 4.31.0.dev0
- Pytorch 2.0.0
- Datasets 2.1.0
- Tokenizers 0.13.3