mmillet's picture
update model card README.md
5f7dbf6
|
raw
history blame
2.38 kB
metadata
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: distilrubert_tiny-2nd-finetune-epru
    results: []

distilrubert_tiny-2nd-finetune-epru

This model is a fine-tuned version of mmillet/distilrubert-tiny-cased-conversational-v1_single_finetuned_on_cedr_augmented on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4467
  • Accuracy: 0.8712
  • F1: 0.8718
  • Precision: 0.8867
  • Recall: 0.8712

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-06
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
0.4947 1.0 12 0.4142 0.8773 0.8777 0.8907 0.8773
0.2614 2.0 24 0.3178 0.9018 0.9011 0.9069 0.9018
0.2079 3.0 36 0.3234 0.8773 0.8784 0.8850 0.8773
0.1545 4.0 48 0.3729 0.8834 0.8830 0.8946 0.8834
0.1028 5.0 60 0.2964 0.9018 0.9016 0.9073 0.9018
0.0986 6.0 72 0.2971 0.9141 0.9139 0.9152 0.9141
0.0561 7.0 84 0.3482 0.8957 0.8962 0.9023 0.8957
0.0336 8.0 96 0.3731 0.8957 0.8953 0.9014 0.8957
0.0364 9.0 108 0.4467 0.8712 0.8718 0.8867 0.8712

Framework versions

  • Transformers 4.20.0
  • Pytorch 1.11.0+cu113
  • Datasets 2.3.2
  • Tokenizers 0.12.1