mmillet commited on
Commit
5f7dbf6
·
1 Parent(s): 876a7e7

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +72 -0
README.md ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - generated_from_trainer
4
+ metrics:
5
+ - accuracy
6
+ - f1
7
+ - precision
8
+ - recall
9
+ model-index:
10
+ - name: distilrubert_tiny-2nd-finetune-epru
11
+ results: []
12
+ ---
13
+
14
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
+ should probably proofread and complete it, then remove this comment. -->
16
+
17
+ # distilrubert_tiny-2nd-finetune-epru
18
+
19
+ This model is a fine-tuned version of [mmillet/distilrubert-tiny-cased-conversational-v1_single_finetuned_on_cedr_augmented](https://huggingface.co/mmillet/distilrubert-tiny-cased-conversational-v1_single_finetuned_on_cedr_augmented) on an unknown dataset.
20
+ It achieves the following results on the evaluation set:
21
+ - Loss: 0.4467
22
+ - Accuracy: 0.8712
23
+ - F1: 0.8718
24
+ - Precision: 0.8867
25
+ - Recall: 0.8712
26
+
27
+ ## Model description
28
+
29
+ More information needed
30
+
31
+ ## Intended uses & limitations
32
+
33
+ More information needed
34
+
35
+ ## Training and evaluation data
36
+
37
+ More information needed
38
+
39
+ ## Training procedure
40
+
41
+ ### Training hyperparameters
42
+
43
+ The following hyperparameters were used during training:
44
+ - learning_rate: 0.0001
45
+ - train_batch_size: 64
46
+ - eval_batch_size: 64
47
+ - seed: 42
48
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-06
49
+ - lr_scheduler_type: linear
50
+ - num_epochs: 20
51
+
52
+ ### Training results
53
+
54
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
55
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
56
+ | 0.4947 | 1.0 | 12 | 0.4142 | 0.8773 | 0.8777 | 0.8907 | 0.8773 |
57
+ | 0.2614 | 2.0 | 24 | 0.3178 | 0.9018 | 0.9011 | 0.9069 | 0.9018 |
58
+ | 0.2079 | 3.0 | 36 | 0.3234 | 0.8773 | 0.8784 | 0.8850 | 0.8773 |
59
+ | 0.1545 | 4.0 | 48 | 0.3729 | 0.8834 | 0.8830 | 0.8946 | 0.8834 |
60
+ | 0.1028 | 5.0 | 60 | 0.2964 | 0.9018 | 0.9016 | 0.9073 | 0.9018 |
61
+ | 0.0986 | 6.0 | 72 | 0.2971 | 0.9141 | 0.9139 | 0.9152 | 0.9141 |
62
+ | 0.0561 | 7.0 | 84 | 0.3482 | 0.8957 | 0.8962 | 0.9023 | 0.8957 |
63
+ | 0.0336 | 8.0 | 96 | 0.3731 | 0.8957 | 0.8953 | 0.9014 | 0.8957 |
64
+ | 0.0364 | 9.0 | 108 | 0.4467 | 0.8712 | 0.8718 | 0.8867 | 0.8712 |
65
+
66
+
67
+ ### Framework versions
68
+
69
+ - Transformers 4.20.0
70
+ - Pytorch 1.11.0+cu113
71
+ - Datasets 2.3.2
72
+ - Tokenizers 0.12.1