File size: 159,153 Bytes
be5cfdb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
{
  "cells": [
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "iYjn5NsyGf2G"
      },
      "source": [
        "# **سلول زیر دیتاست را دانلود می کند**"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "G4WiDS1q93wN",
        "outputId": "b2c1c064-ced6-4533-e71d-74d09e17c267"
      },
      "outputs": [
        {
          "name": "stdout",
          "output_type": "stream",
          "text": [
            "Downloading from https://www.kaggle.com/api/v1/datasets/download/birdy654/cifake-real-and-ai-generated-synthetic-images?dataset_version_number=3...\n"
          ]
        },
        {
          "name": "stderr",
          "output_type": "stream",
          "text": [
            "100%|██████████| 105M/105M [00:01<00:00, 100MB/s] "
          ]
        },
        {
          "name": "stdout",
          "output_type": "stream",
          "text": [
            "Extracting files...\n"
          ]
        },
        {
          "name": "stderr",
          "output_type": "stream",
          "text": [
            "\n"
          ]
        },
        {
          "name": "stdout",
          "output_type": "stream",
          "text": [
            "Path to dataset files: /root/.cache/kagglehub/datasets/birdy654/cifake-real-and-ai-generated-synthetic-images/versions/3\n"
          ]
        }
      ],
      "source": [
        "import kagglehub\n",
        "\n",
        "\n",
        "path = kagglehub.dataset_download(\"birdy654/cifake-real-and-ai-generated-synthetic-images\")\n",
        "\n",
        "print(\"Path to dataset files:\", path)"
      ]
    },
    {
      "cell_type": "markdown",
      "source": [
        "# اتصال به گوگل درایو و فراخوانی کتابخان های مورد نیاز"
      ],
      "metadata": {
        "id": "E9a3rYPZTk_o"
      }
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "Zvw82lD9IEnk",
        "outputId": "6a959025-991f-4db1-a95d-fc5d07e26735"
      },
      "outputs": [
        {
          "name": "stdout",
          "output_type": "stream",
          "text": [
            "Mounted at /content/drive\n"
          ]
        }
      ],
      "source": [
        "from google.colab import drive\n",
        "drive.mount('/content/drive')\n",
        "\n",
        "\n",
        "from tensorflow.keras.applications import ResNet50\n",
        "from tensorflow.keras.models import Sequential\n",
        "from tensorflow.keras.layers import Flatten, Dense, Dropout\n",
        "from tensorflow.keras.callbacks import ModelCheckpoint\n",
        "import tensorflow as tf"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 655
        },
        "id": "Ou5bfzA3CJPd",
        "outputId": "a3679784-d4c7-4f76-b1a9-eb6164ec0748"
      },
      "outputs": [
        {
          "name": "stdout",
          "output_type": "stream",
          "text": [
            "Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount(\"/content/drive\", force_remount=True).\n",
            "GPU is available!\n",
            "Found 100000 files belonging to 2 classes.\n",
            "Using 80000 files for training.\n",
            "Found 100000 files belonging to 2 classes.\n",
            "Using 20000 files for validation.\n",
            "Downloading data from https://storage.googleapis.com/tensorflow/keras-applications/resnet/resnet50_weights_tf_dim_ordering_tf_kernels_notop.h5\n",
            "\u001b[1m94765736/94765736\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 0us/step\n"
          ]
        },
        {
          "data": {
            "text/html": [
              "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"><span style=\"font-weight: bold\">Model: \"sequential_1\"</span>\n",
              "</pre>\n"
            ],
            "text/plain": [
              "\u001b[1mModel: \"sequential_1\"\u001b[0m\n"
            ]
          },
          "metadata": {},
          "output_type": "display_data"
        },
        {
          "data": {
            "text/html": [
              "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓\n",
              "┃<span style=\"font-weight: bold\"> Layer (type)                    </span>┃<span style=\"font-weight: bold\"> Output Shape           </span>┃<span style=\"font-weight: bold\">       Param # </span>┃\n",
              "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩\n",
              "│ resnet50 (<span style=\"color: #0087ff; text-decoration-color: #0087ff\">Functional</span>)           │ (<span style=\"color: #00d7ff; text-decoration-color: #00d7ff\">None</span>, <span style=\"color: #00af00; text-decoration-color: #00af00\">8</span>, <span style=\"color: #00af00; text-decoration-color: #00af00\">8</span>, <span style=\"color: #00af00; text-decoration-color: #00af00\">2048</span>)     │    <span style=\"color: #00af00; text-decoration-color: #00af00\">23,587,712</span> │\n",
              "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
              "│ flatten (<span style=\"color: #0087ff; text-decoration-color: #0087ff\">Flatten</span>)               │ (<span style=\"color: #00d7ff; text-decoration-color: #00d7ff\">None</span>, <span style=\"color: #00af00; text-decoration-color: #00af00\">131072</span>)         │             <span style=\"color: #00af00; text-decoration-color: #00af00\">0</span> │\n",
              "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
              "│ dense (<span style=\"color: #0087ff; text-decoration-color: #0087ff\">Dense</span>)                   │ (<span style=\"color: #00d7ff; text-decoration-color: #00d7ff\">None</span>, <span style=\"color: #00af00; text-decoration-color: #00af00\">512</span>)            │    <span style=\"color: #00af00; text-decoration-color: #00af00\">67,109,376</span> │\n",
              "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
              "│ dropout (<span style=\"color: #0087ff; text-decoration-color: #0087ff\">Dropout</span>)               │ (<span style=\"color: #00d7ff; text-decoration-color: #00d7ff\">None</span>, <span style=\"color: #00af00; text-decoration-color: #00af00\">512</span>)            │             <span style=\"color: #00af00; text-decoration-color: #00af00\">0</span> │\n",
              "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
              "│ dense_1 (<span style=\"color: #0087ff; text-decoration-color: #0087ff\">Dense</span>)                 │ (<span style=\"color: #00d7ff; text-decoration-color: #00d7ff\">None</span>, <span style=\"color: #00af00; text-decoration-color: #00af00\">1</span>)              │           <span style=\"color: #00af00; text-decoration-color: #00af00\">513</span> │\n",
              "└─────────────────────────────────┴────────────────────────┴───────────────┘\n",
              "</pre>\n"
            ],
            "text/plain": [
              "┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓\n",
              "┃\u001b[1m \u001b[0m\u001b[1mLayer (type)                   \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1mOutput Shape          \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1m      Param #\u001b[0m\u001b[1m \u001b[0m┃\n",
              "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩\n",
              "│ resnet50 (\u001b[38;5;33mFunctional\u001b[0m)           │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m8\u001b[0m, \u001b[38;5;34m8\u001b[0m, \u001b[38;5;34m2048\u001b[0m)     │    \u001b[38;5;34m23,587,712\u001b[0m │\n",
              "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
              "│ flatten (\u001b[38;5;33mFlatten\u001b[0m)               │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m131072\u001b[0m)         │             \u001b[38;5;34m0\u001b[0m │\n",
              "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
              "│ dense (\u001b[38;5;33mDense\u001b[0m)                   │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m512\u001b[0m)            │    \u001b[38;5;34m67,109,376\u001b[0m │\n",
              "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
              "│ dropout (\u001b[38;5;33mDropout\u001b[0m)               │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m512\u001b[0m)            │             \u001b[38;5;34m0\u001b[0m │\n",
              "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
              "│ dense_1 (\u001b[38;5;33mDense\u001b[0m)                 │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m1\u001b[0m)              │           \u001b[38;5;34m513\u001b[0m │\n",
              "└─────────────────────────────────┴────────────────────────┴───────────────┘\n"
            ]
          },
          "metadata": {},
          "output_type": "display_data"
        },
        {
          "data": {
            "text/html": [
              "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"><span style=\"font-weight: bold\"> Total params: </span><span style=\"color: #00af00; text-decoration-color: #00af00\">90,697,601</span> (345.98 MB)\n",
              "</pre>\n"
            ],
            "text/plain": [
              "\u001b[1m Total params: \u001b[0m\u001b[38;5;34m90,697,601\u001b[0m (345.98 MB)\n"
            ]
          },
          "metadata": {},
          "output_type": "display_data"
        },
        {
          "data": {
            "text/html": [
              "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"><span style=\"font-weight: bold\"> Trainable params: </span><span style=\"color: #00af00; text-decoration-color: #00af00\">67,109,889</span> (256.00 MB)\n",
              "</pre>\n"
            ],
            "text/plain": [
              "\u001b[1m Trainable params: \u001b[0m\u001b[38;5;34m67,109,889\u001b[0m (256.00 MB)\n"
            ]
          },
          "metadata": {},
          "output_type": "display_data"
        },
        {
          "data": {
            "text/html": [
              "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"><span style=\"font-weight: bold\"> Non-trainable params: </span><span style=\"color: #00af00; text-decoration-color: #00af00\">23,587,712</span> (89.98 MB)\n",
              "</pre>\n"
            ],
            "text/plain": [
              "\u001b[1m Non-trainable params: \u001b[0m\u001b[38;5;34m23,587,712\u001b[0m (89.98 MB)\n"
            ]
          },
          "metadata": {},
          "output_type": "display_data"
        },
        {
          "name": "stdout",
          "output_type": "stream",
          "text": [
            "Checkpoint loaded successfully!\n",
            "Epoch 20/20\n"
          ]
        },
        {
          "name": "stderr",
          "output_type": "stream",
          "text": [
            "/usr/local/lib/python3.11/dist-packages/keras/src/saving/saving_lib.py:757: UserWarning: Skipping variable loading for optimizer 'adam', because it has 2 variables whereas the saved optimizer has 10 variables. \n",
            "  saveable.load_own_variables(weights_store.get(inner_path))\n"
          ]
        },
        {
          "name": "stdout",
          "output_type": "stream",
          "text": [
            "\u001b[1m2500/2500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 524ms/step - accuracy: 0.9071 - loss: 0.2398\n",
            "Epoch 20: saving model to /content/drive/MyDrive/model_checkpoint.weights.h5\n",
            "\u001b[1m2500/2500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1419s\u001b[0m 561ms/step - accuracy: 0.9071 - loss: 0.2398 - val_accuracy: 0.9374 - val_loss: 0.1792\n",
            "\u001b[1m625/625\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m64s\u001b[0m 102ms/step - accuracy: 0.9360 - loss: 0.1796\n"
          ]
        },
        {
          "name": "stderr",
          "output_type": "stream",
          "text": [
            "WARNING:absl:You are saving your model as an HDF5 file via `model.save()` or `keras.saving.save_model(model)`. This file format is considered legacy. We recommend using instead the native Keras format, e.g. `model.save('my_model.keras')` or `keras.saving.save_model(model, 'my_model.keras')`. \n"
          ]
        },
        {
          "name": "stdout",
          "output_type": "stream",
          "text": [
            "Validation Accuracy: 93.74%\n",
            "Model saved successfully!\n"
          ]
        }
      ],
      "source": [
        "if len(tf.config.list_physical_devices('GPU')) > 0:\n",
        "    print(\"GPU is available!\")\n",
        "else:\n",
        "    print(\"GPU is NOT available. Make sure you enabled GPU in Colab.\")\n",
        "\n",
        "\n",
        "train_data = tf.keras.utils.image_dataset_from_directory(\n",
        "    \"/root/.cache/kagglehub/datasets/birdy654/cifake-real-and-ai-generated-synthetic-images/versions/3/train\",\n",
        "    image_size=(256, 256),\n",
        "    batch_size=32,\n",
        "    subset=\"training\",\n",
        "    validation_split=0.2,\n",
        "    seed=42\n",
        ")\n",
        "\n",
        "val_data = tf.keras.utils.image_dataset_from_directory(\n",
        "    \"/root/.cache/kagglehub/datasets/birdy654/cifake-real-and-ai-generated-synthetic-images/versions/3/train\",\n",
        "    image_size=(256, 256),\n",
        "    batch_size=32,\n",
        "    subset=\"validation\",\n",
        "    validation_split=0.2,\n",
        "    seed=42\n",
        ")\n",
        "\n",
        "\n",
        "from tensorflow.keras import layers\n",
        "\n",
        "data_augmentation = tf.keras.Sequential([\n",
        "    layers.RandomFlip(\"horizontal\"),\n",
        "    layers.RandomRotation(0.2),\n",
        "    layers.RandomZoom(0.2)\n",
        "])\n",
        "\n",
        "train_data = train_data.map(lambda x, y: (data_augmentation(x), y))\n",
        "\n",
        "# فراخوانی مدل از پیش اموزش دیده resnet50\n",
        "base_model = ResNet50(\n",
        "    input_shape=(256, 256, 3),\n",
        "    include_top=False,\n",
        "    weights='imagenet'\n",
        ")\n",
        "\n",
        "# به وزن های مدل پایه دست نزن\n",
        "base_model.trainable = False\n",
        "\n",
        "\n",
        "model = Sequential([\n",
        "    base_model,\n",
        "    Flatten(),\n",
        "    Dense(512, activation='relu'),\n",
        "    Dropout(0.5),              # برای جلوگیری از بیش برازش\n",
        "    Dense(1, activation='sigmoid')  # کلسیفایر باینری\n",
        "])\n",
        "\n",
        "\n",
        "model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])\n",
        "model.summary()\n",
        "\n",
        "\n",
        "checkpoint = ModelCheckpoint(\n",
        "    filepath=\"/content/drive/MyDrive/model_checkpoint.weights.h5\",\n",
        "    save_weights_only=True,\n",
        "    save_best_only=False,\n",
        "    verbose=1\n",
        ")\n",
        "\n",
        "\n",
        "checkpoint_path = \"/content/drive/MyDrive/model_checkpoint.weights.h5\"\n",
        "model.load_weights(checkpoint_path)\n",
        "\n",
        "print(\"Checkpoint loaded successfully!\")\n",
        "\n",
        "\n",
        "history = model.fit(\n",
        "    train_data,\n",
        "    validation_data=val_data,\n",
        "    initial_epoch=19,\n",
        "    epochs=20,\n",
        "    verbose=1,\n",
        "    callbacks=[checkpoint]\n",
        ")\n",
        "\n",
        "\n",
        "loss, accuracy = model.evaluate(val_data)\n",
        "print(f\"Validation Accuracy: {accuracy*100:.2f}%\")\n",
        "\n",
        "\n",
        "model.save(\"/content/drive/MyDrive/fake_real_classifier_resnet50.h5\")\n",
        "print(\"Model saved successfully!\")"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "wcxu_yEJIjQV",
        "outputId": "eb9d439e-63c4-4d3b-9c34-512dc4a7b8c8"
      },
      "outputs": [
        {
          "name": "stdout",
          "output_type": "stream",
          "text": [
            "Downloading data from https://storage.googleapis.com/tensorflow/keras-applications/resnet/resnet50_weights_tf_dim_ordering_tf_kernels_notop.h5\n",
            "\u001b[1m94765736/94765736\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 0us/step\n",
            "مدل و وزن‌ها با موفقیت بارگذاری شدند!\n"
          ]
        },
        {
          "name": "stderr",
          "output_type": "stream",
          "text": [
            "/usr/local/lib/python3.11/dist-packages/keras/src/saving/saving_lib.py:757: UserWarning: Skipping variable loading for optimizer 'adam', because it has 2 variables whereas the saved optimizer has 10 variables. \n",
            "  saveable.load_own_variables(weights_store.get(inner_path))\n"
          ]
        }
      ],
      "source": [
        "import tensorflow as tf\n",
        "from tensorflow.keras.applications import ResNet50\n",
        "from tensorflow.keras.models import Sequential\n",
        "from tensorflow.keras.layers import Flatten, Dense, Dropout\n",
        "\n",
        "\n",
        "base_model = ResNet50(\n",
        "    input_shape=(256, 256, 3),\n",
        "    include_top=False,\n",
        "    weights='imagenet'\n",
        ")\n",
        "base_model.trainable = False\n",
        "\n",
        "model = Sequential([\n",
        "    base_model,\n",
        "    Flatten(),\n",
        "    Dense(512, activation='relu'),\n",
        "    Dropout(0.5),\n",
        "    Dense(1, activation='sigmoid')\n",
        "])\n",
        "\n",
        "\n",
        "model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])\n",
        "\n",
        "# 4. بارگذاری وزن‌های ذخیره شده از گوگل درایو\n",
        "checkpoint_path = \"/content/drive/MyDrive/model_checkpoint.weights.h5\"\n",
        "model.load_weights(checkpoint_path)\n",
        "\n",
        "print(\"مدل و وزن‌ها با موفقیت بارگذاری شدند!\")"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "gGIabNQzHVZC",
        "outputId": "2c4cdf55-c870-4fc7-d130-21f4e48d6833"
      },
      "outputs": [
        {
          "name": "stdout",
          "output_type": "stream",
          "text": [
            "Found 20000 files belonging to 2 classes.\n",
            "Evaluating on test data...\n",
            "\u001b[1m625/625\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m68s\u001b[0m 94ms/step - accuracy: 0.9458 - loss: 0.1544\n",
            "Test Accuracy: 93.34%\n"
          ]
        }
      ],
      "source": [
        "test_data = tf.keras.utils.image_dataset_from_directory(\n",
        "    \"/root/.cache/kagglehub/datasets/birdy654/cifake-real-and-ai-generated-synthetic-images/versions/3/test\",\n",
        "    image_size=(256, 256),\n",
        "    batch_size=32,\n",
        "    shuffle=False  # شافل کردن در تست معمولاً لازم نیست\n",
        ")\n",
        "\n",
        "\n",
        "print(\"Evaluating on test data...\")\n",
        "loss, accuracy = model.evaluate(test_data)\n",
        "print(f\"Test Accuracy: {accuracy*100:.2f}%\")"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "colab": {
          "background_save": true,
          "base_uri": "https://localhost:8080/"
        },
        "id": "LtpRhWebJPeg",
        "outputId": "aaded362-4820-4d0e-b884-5c191d6fcbdd"
      },
      "outputs": [
        {
          "name": "stdout",
          "output_type": "stream",
          "text": [
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 5s/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 196ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 181ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 157ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 136ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 130ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 126ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 135ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 126ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 125ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 127ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 125ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 132ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 125ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 127ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 131ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 133ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 135ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 124ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 136ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 126ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 135ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 151ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 128ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 124ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 125ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 128ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 124ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 125ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 124ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 125ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 128ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 126ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 126ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 125ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 127ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 124ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 125ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 136ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 127ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 132ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 122ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 133ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 126ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 125ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 135ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 127ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 129ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 127ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 125ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 124ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 130ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 132ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 159ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 146ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 157ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 153ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 153ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 158ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 154ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 155ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 150ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 166ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 128ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 125ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 136ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 128ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 127ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 128ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 126ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 125ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 126ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 146ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 126ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 124ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 125ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 128ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 125ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 128ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 136ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 126ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 133ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 127ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 136ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 125ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 127ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 127ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 136ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 127ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 128ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 179ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 170ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 185ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 180ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 208ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 306ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 269ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 276ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 287ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 256ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 226ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 328ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 259ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 284ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 229ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 314ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 272ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 283ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 256ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 130ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 129ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 120ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 128ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 132ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 130ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 147ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 128ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 127ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 132ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 129ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 131ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 126ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 136ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 136ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 127ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 127ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 127ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 146ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 130ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 130ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 129ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 128ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 128ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 130ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 130ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 129ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 133ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 134ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 129ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 131ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 131ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 126ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 128ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 125ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 132ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 127ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 131ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 128ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 148ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 158ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 148ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 151ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 159ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 157ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 146ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 158ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 149ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 152ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 153ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 132ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 131ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 131ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 129ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 131ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 129ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 130ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 127ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 126ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 126ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 131ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 128ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 129ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 129ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 130ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 130ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 129ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 129ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 130ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 128ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 128ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 130ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 132ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 128ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 130ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 129ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 130ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 136ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 129ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 131ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 133ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 129ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 129ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 132ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 127ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 126ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 127ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 130ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 130ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 128ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 131ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 134ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 129ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 130ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 130ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 131ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 128ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 135ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 130ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 135ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 131ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 146ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 150ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 147ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 147ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 146ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 157ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 148ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 148ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 151ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 149ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 131ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 127ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 127ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 126ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 127ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 127ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 131ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 156ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 132ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 130ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 175ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 163ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 128ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 128ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 223ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 135ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 128ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 131ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 130ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 135ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 135ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 129ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 127ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 125ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 125ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 132ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 124ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 128ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 131ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 134ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 131ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 131ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 131ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 127ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 123ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 131ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 128ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 125ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 125ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 128ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 134ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 134ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 129ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 133ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 129ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 131ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 155ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 150ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 151ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 148ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 150ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 147ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 127ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 128ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 127ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 127ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 128ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 131ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 135ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 134ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 129ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 130ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 128ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 128ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 131ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 129ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 128ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 127ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 131ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 131ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 130ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 128ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 127ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 130ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 135ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 128ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 128ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 126ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 126ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 128ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 129ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 127ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 129ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 131ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 130ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 129ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 130ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 129ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 124ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 131ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 126ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 126ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 127ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 129ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 135ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 134ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 132ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 130ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 129ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 129ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 127ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 132ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 127ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 131ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 132ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 151ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 146ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 147ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 146ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 146ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 149ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 150ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 148ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 128ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 129ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 136ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 130ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 128ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 127ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 125ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 129ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 132ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 134ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 129ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 131ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 132ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 128ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 129ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 127ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 126ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 134ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 133ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 127ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 128ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 127ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 129ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 128ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 131ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 128ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 130ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 126ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 134ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 134ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 128ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 128ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 127ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 132ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 129ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 133ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 128ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 128ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 127ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 127ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 128ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 133ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 127ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 131ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 131ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 133ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 129ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 129ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 130ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 129ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 130ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 125ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 132ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 147ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 151ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 152ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 151ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 147ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 161ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 154ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 129ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 133ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 132ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 126ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 126ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 131ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 129ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 127ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 130ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 127ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 126ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 127ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 127ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 132ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 133ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 129ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 128ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 130ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 128ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 127ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 130ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 127ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 126ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 125ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 130ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 132ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 133ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 131ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 130ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 132ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 132ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 130ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 131ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 129ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 129ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 133ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 132ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 129ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 133ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 128ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 129ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 133ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 133ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 129ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 128ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 132ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 132ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 136ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 132ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 150ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 149ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 151ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 150ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 149ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 153ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 156ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 155ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 152ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 156ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 130ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 129ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 130ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 131ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 128ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 128ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 133ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 133ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 132ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 135ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 130ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 131ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 135ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 131ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 130ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 131ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 129ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 128ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 132ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 129ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 129ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 131ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 129ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 132ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 129ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 129ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 134ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 129ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 135ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 131ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 133ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 133ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 131ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 128ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 132ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 135ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 131ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 128ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 134ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 133ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 136ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 130ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 132ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 134ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 133ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 127ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 127ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 135ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 159ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 148ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 156ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 158ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 164ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 151ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 157ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 146ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 132ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 132ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 129ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 131ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 133ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 130ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 129ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 130ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 131ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 135ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 132ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 130ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 132ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 135ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 130ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 132ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 132ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 132ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 128ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 130ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 128ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 135ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 132ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 132ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 134ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 136ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 134ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 134ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 131ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 134ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 132ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 133ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 134ms/step\n",
            "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 133ms/step\n",
            "\n",
            "Classification Report:\n",
            "              precision    recall  f1-score   support\n",
            "\n",
            "        FAKE       0.92      0.95      0.93     10000\n",
            "        REAL       0.95      0.91      0.93     10000\n",
            "\n",
            "    accuracy                           0.93     20000\n",
            "   macro avg       0.93      0.93      0.93     20000\n",
            "weighted avg       0.93      0.93      0.93     20000\n",
            "\n"
          ]
        },
        {
          "data": {
            "image/png": "iVBORw0KGgoAAAANSUhEUgAAApIAAAIjCAYAAACwHvu2AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAATPtJREFUeJzt3XlcVPX+x/H3ADIgCrgjqeSWaZmamrumklhamWaZmrhnYVfFLTM3zOha7pWW4ZJpppZW2nW54lJumeW+51YqYCogyqJwfn/0c24TmnBiGGRez/s4j0fzPd/5ns+Zx5368Pl+z3cshmEYAgAAALLJzdkBAAAA4O5EIgkAAABTSCQBAABgCokkAAAATCGRBAAAgCkkkgAAADCFRBIAAACmkEgCAADAFBJJAAAAmEIiCeBvHTt2TK1atZKfn58sFotWrFiRo+OfOnVKFotF8+bNy9Fx72aPPvqoHn30UWeHAQB3RCIJ3AV++eUXvfTSS6pQoYK8vLzk6+urRo0aadq0aUpOTnbotUNDQ7Vv3z5NmDBBCxYsUJ06dRx6vdzUvXt3WSwW+fr63vJzPHbsmCwWiywWi959991sj3/u3DmNHTtWu3fvzoFoASDv8XB2AAD+3qpVq9SxY0dZrVZ169ZNDz74oNLS0vT9999r6NChOnDggD766COHXDs5OVnbtm3TyJEj1b9/f4dcIygoSMnJySpQoIBDxr8TDw8PXbt2Td98842ee+45u3MLFy6Ul5eXUlJSTI197tw5jRs3Tvfee69q1qyZ5fetXbvW1PUAILeRSAJ52MmTJ9WpUycFBQUpOjpapUuXtp0LCwvT8ePHtWrVKodd/8KFC5Ikf39/h13DYrHIy8vLYePfidVqVaNGjfTZZ59lSiQXLVqkNm3a6IsvvsiVWK5du6aCBQvK09MzV64HAP8UU9tAHjZx4kQlJSUpKirKLom8qVKlShowYIDt9Y0bNzR+/HhVrFhRVqtV9957r15//XWlpqbave/ee+9V27Zt9f333+uRRx6Rl5eXKlSooE8++cTWZ+zYsQoKCpIkDR06VBaLRffee6+kP6aEb/7zn40dO1YWi8Wubd26dWrcuLH8/f1VqFAhValSRa+//rrt/O3WSEZHR6tJkyby8fGRv7+/nn76aR06dOiW1zt+/Li6d+8uf39/+fn5qUePHrp27drtP9i/6Ny5s/7zn/8oPj7e1rZz504dO3ZMnTt3ztT/0qVLGjJkiKpXr65ChQrJ19dXjz/+uPbs2WPrs3HjRtWtW1eS1KNHD9sU+c37fPTRR/Xggw9q165datq0qQoWLGj7XP66RjI0NFReXl6Z7j8kJERFihTRuXPnsnyvAJCTSCSBPOybb75RhQoV1LBhwyz17927t0aPHq2HH35YU6ZMUbNmzRQZGalOnTpl6nv8+HE9++yzeuyxxzRp0iQVKVJE3bt314EDByRJ7du315QpUyRJL7zwghYsWKCpU6dmK/4DBw6obdu2Sk1NVUREhCZNmqSnnnpKW7Zs+dv3/fe//1VISIji4uI0duxYhYeHa+vWrWrUqJFOnTqVqf9zzz2nK1euKDIyUs8995zmzZuncePGZTnO9u3by2Kx6Msvv7S1LVq0SPfff78efvjhTP1PnDihFStWqG3btpo8ebKGDh2qffv2qVmzZrakrmrVqoqIiJAk9e3bVwsWLNCCBQvUtGlT2zgXL17U448/rpo1a2rq1Klq3rz5LeObNm2aSpQoodDQUKWnp0uSPvzwQ61du1YzZsxQYGBglu8VAHKUASBPSkhIMCQZTz/9dJb6796925Bk9O7d2659yJAhhiQjOjra1hYUFGRIMjZv3mxri4uLM6xWqzF48GBb28mTJw1JxjvvvGM3ZmhoqBEUFJQphjFjxhh//tfKlClTDEnGhQsXbhv3zWvMnTvX1lazZk2jZMmSxsWLF21te/bsMdzc3Ixu3bplul7Pnj3txnzmmWeMYsWK3faaf74PHx8fwzAM49lnnzVatmxpGIZhpKenGwEBAca4ceNu+RmkpKQY6enpme7DarUaERERtradO3dmurebmjVrZkgyZs2adctzzZo1s2tbs2aNIcl48803jRMnThiFChUy2rVrd8d7BABHoiIJ5FGJiYmSpMKFC2ep/7fffitJCg8Pt2sfPHiwJGVaS1mtWjU1adLE9rpEiRKqUqWKTpw4YTrmv7q5tvKrr75SRkZGlt5z/vx57d69W927d1fRokVt7Q899JAee+wx233+Wb9+/exeN2nSRBcvXrR9hlnRuXNnbdy4UTExMYqOjlZMTMwtp7WlP9ZVurn98a/P9PR0Xbx40TZt/9NPP2X5mlarVT169MhS31atWumll15SRESE2rdvLy8vL3344YdZvhYAOAKJJJBH+fr6SpKuXLmSpf6nT5+Wm5ubKlWqZNceEBAgf39/nT592q69XLlymcYoUqSILl++bDLizJ5//nk1atRIvXv3VqlSpdSpUyctWbLkb5PKm3FWqVIl07mqVavq999/19WrV+3a/3ovRYoUkaRs3csTTzyhwoUL6/PPP9fChQtVt27dTJ/lTRkZGZoyZYoqV64sq9Wq4sWLq0SJEtq7d68SEhKyfM177rknWw/WvPvuuypatKh2796t6dOnq2TJkll+LwA4AokkkEf5+voqMDBQ+/fvz9b7/vqwy+24u7vfst0wDNPXuLl+7yZvb29t3rxZ//3vf/Xiiy9q7969ev755/XYY49l6vtP/JN7uclqtap9+/aaP3++li9ffttqpCS99dZbCg8PV9OmTfXpp59qzZo1WrdunR544IEsV16lPz6f7Pj5558VFxcnSdq3b1+23gsAjkAiCeRhbdu21S+//KJt27bdsW9QUJAyMjJ07Ngxu/bY2FjFx8fbnsDOCUWKFLF7wvmmv1Y9JcnNzU0tW7bU5MmTdfDgQU2YMEHR0dHasGHDLce+GeeRI0cynTt8+LCKFy8uHx+ff3YDt9G5c2f9/PPPunLlyi0fULpp2bJlat68uaKiotSpUye1atVKwcHBmT6TrCb1WXH16lX16NFD1apVU9++fTVx4kTt3Lkzx8YHADNIJIE8bNiwYfLx8VHv3r0VGxub6fwvv/yiadOmSfpjalZSpierJ0+eLElq06ZNjsVVsWJFJSQkaO/evba28+fPa/ny5Xb9Ll26lOm9Nzfm/uuWRDeVLl1aNWvW1Pz58+0Ss/3792vt2rW2+3SE5s2ba/z48XrvvfcUEBBw237u7u6Zqp1Lly7V2bNn7dpuJry3Srqza/jw4Tpz5ozmz5+vyZMn695771VoaOhtP0cAyA1sSA7kYRUrVtSiRYv0/PPPq2rVqna/bLN161YtXbpU3bt3lyTVqFFDoaGh+uijjxQfH69mzZrphx9+0Pz589WuXbvbbi1jRqdOnTR8+HA988wz+te//qVr165p5syZuu++++weNomIiNDmzZvVpk0bBQUFKS4uTh988IHKlCmjxo0b33b8d955R48//rgaNGigXr16KTk5WTNmzJCfn5/Gjh2bY/fxV25ubnrjjTfu2K9t27aKiIhQjx491LBhQ+3bt08LFy5UhQoV7PpVrFhR/v7+mjVrlgoXLiwfHx/Vq1dP5cuXz1Zc0dHR+uCDDzRmzBjbdkRz587Vo48+qlGjRmnixInZGg8AcgoVSSCPe+qpp7R37149++yz+uqrrxQWFqbXXntNp06d0qRJkzR9+nRb348//ljjxo3Tzp07NXDgQEVHR2vEiBFavHhxjsZUrFgxLV++XAULFtSwYcM0f/58RUZG6sknn8wUe7ly5TRnzhyFhYXp/fffV9OmTRUdHS0/P7/bjh8cHKzVq1erWLFiGj16tN59913Vr19fW7ZsyXYS5givv/66Bg8erDVr1mjAgAH66aeftGrVKpUtW9auX4ECBTR//ny5u7urX79+euGFF7Rp06ZsXevKlSvq2bOnatWqpZEjR9ramzRpogEDBmjSpEnavn17jtwXAGSXxcjOanQAAADg/1GRBAAAgCkkkgAAADCFRBIAAACmkEgCAADAFBJJAAAAmEIiCQAAAFNIJAEAAGBKvvxlG+9a/Z0dAgAHubzzPWeHAMBBvJyYlTgyd0j+Of/+e4uKJAAAAEzJlxVJAACAbLFQWzODRBIAAMBicXYEdyXSbwAAAJhCRRIAAICpbVP41AAAAGAKFUkAAADWSJpCRRIAAACmUJEEAABgjaQpfGoAAAAwhYokAAAAayRNIZEEAABgatsUPjUAAACYQkUSAACAqW1TqEgCAADAFCqSAAAArJE0hU8NAAAAplCRBAAAYI2kKVQkAQAAYAoVSQAAANZImkIiCQAAwNS2KaTfAAAAMIWKJAAAAFPbpvCpAQAAwBQqkgAAAFQkTeFTAwAAgClUJAEAANx4atsMKpIAAAAwhYokAAAAayRNIZEEAABgQ3JTSL8BAABgChVJAAAAprZN4VMDAACAKVQkAQAAWCNpChVJAAAAmEJFEgAAgDWSpvCpAQAAwBQqkgAAAKyRNIVEEgAAgKltU/jUAAAAYAoVSQAAAKa2TaEiCQAAAFOoSAIAALBG0hQ+NQAAAJhCRRIAAIA1kqZQkQQAAIApVCQBAABYI2kKiSQAAACJpCl8agAAADCFiiQAAAAP25hCRRIAAACmUJEEAABgjaQpfGoAAAAwhYokAAAAayRNoSIJAAAAU6hIAgAAsEbSFBJJAAAAprZNIf0GAACAKVQkAQCAy7NQkTSFiiQAAABMoSIJAABcHhVJc6hIAgAAwBQqkgAAABQkTaEiCQAAAFOoSAIAAJfHGklzSCQBAIDLI5E0h6ltAAAAmEJFEgAAuDwqkuZQkQQAAIApVCQBAIDLoyJpDhVJAAAAmEJFEgAAgIKkKVQkAQAA8oj09HSNGjVK5cuXl7e3typWrKjx48fLMAxbH8MwNHr0aJUuXVre3t4KDg7WsWPH7Ma5dOmSunTpIl9fX/n7+6tXr15KSkqy67N37141adJEXl5eKlu2rCZOnJjteEkkAQCAy7NYLA47suPf//63Zs6cqffee0+HDh3Sv//9b02cOFEzZsyw9Zk4caKmT5+uWbNmaceOHfLx8VFISIhSUlJsfbp06aIDBw5o3bp1WrlypTZv3qy+ffvazicmJqpVq1YKCgrSrl279M4772js2LH66KOPsve5GX9OcfMJ71r9nR0CAAe5vPM9Z4cAwEG8nLjgzr/Lpw4bO35h1yz3bdu2rUqVKqWoqChbW4cOHeTt7a1PP/1UhmEoMDBQgwcP1pAhQyRJCQkJKlWqlObNm6dOnTrp0KFDqlatmnbu3Kk6depIklavXq0nnnhCv/32mwIDAzVz5kyNHDlSMTEx8vT0lCS99tprWrFihQ4fPpzleKlIAgAAl+fIimRqaqoSExPtjtTU1FvG0bBhQ61fv15Hjx6VJO3Zs0fff/+9Hn/8cUnSyZMnFRMTo+DgYNt7/Pz8VK9ePW3btk2StG3bNvn7+9uSSEkKDg6Wm5ubduzYYevTtGlTWxIpSSEhITpy5IguX76c5c+NRBIAALg8RyaSkZGR8vPzszsiIyNvGcdrr72mTp066f7771eBAgVUq1YtDRw4UF26dJEkxcTESJJKlSpl975SpUrZzsXExKhkyZJ25z08PFS0aFG7Prca48/XyAqe2gYAAHCgESNGKDw83K7NarXesu+SJUu0cOFCLVq0SA888IB2796tgQMHKjAwUKGhobkRbraQSAIAAJfnyA3JrVbrbRPHvxo6dKitKilJ1atX1+nTpxUZGanQ0FAFBARIkmJjY1W6dGnb+2JjY1WzZk1JUkBAgOLi4uzGvXHjhi5dumR7f0BAgGJjY+363Hx9s09WMLUNAACQR1y7dk1ubvbpmbu7uzIyMiRJ5cuXV0BAgNavX287n5iYqB07dqhBgwaSpAYNGig+Pl67du2y9YmOjlZGRobq1atn67N582Zdv37d1mfdunWqUqWKihQpkuV4SSQBAAAsDjyy4cknn9SECRO0atUqnTp1SsuXL9fkyZP1zDPP/BGmxaKBAwfqzTff1Ndff619+/apW7duCgwMVLt27SRJVatWVevWrdWnTx/98MMP2rJli/r3769OnTopMDBQktS5c2d5enqqV69eOnDggD7//HNNmzYt0xT8nTC1DQAAkEfMmDFDo0aN0iuvvKK4uDgFBgbqpZde0ujRo219hg0bpqtXr6pv376Kj49X48aNtXr1anl5edn6LFy4UP3791fLli3l5uamDh06aPr06bbzfn5+Wrt2rcLCwlS7dm0VL15co0ePtttrMivYRxLAXYV9JIH8y5n7SBbvvthhY/8+r5PDxnY2prYBAABgClPbAADA5Tnyqe38jEQSAAC4PBJJc5jaBgAAgClUJAEAAChImkJFEgAAAKZQkQQAAC6PNZLmUJEEAACAKVQkAQCAy6MiaQ4VSQAAAJhCRRIAALg8KpLmkEgCAACXRyJpDlPbAAAAMIWKJAAAAAVJU6hIAgAAwBQqkgAAwOWxRtIcKpIAAAAwhYokAABweVQkzcnTFUnDMBQXF+fsMAAAAHALTk0kCxYsqAsXLthet2nTRufPn7e9jouLU+nSpZ0RGgAAcCEWi8VhR37m1KntlJQUGYZhe71582YlJyfb9fnzeQAAAIfI3/mew+TpqW2JNQsAAAB5FQ/bAAAAl0fhyhynViT/unbAFdYSAAAA5BdOrUgahqH77rvPljwmJSWpVq1acnNzs50HAABwNApZ5jg1kZw7d64zLw8AAIB/wKmJZJcuXeTh8fchHDx4MJeigbMUKmjVmFfa6qkWNVSiSCHtOfKbhkxcpl0Hz0iSPhrXVS8+Vd/uPWu3HNTT/T+wvR7WK0SPN3lAD91XRmk3bqh002GZrlO7WjmN/9fTqlWtrAxD+nH/aY2ctkL7jp517A0CuK2o2R9p+tRJ6tK1m4aNGClJ+v3CBU2eNFHbt27V1WtXde+95dWnbz8FtwqRJJ09+5s+mvWBftixXRd//10lSpZUm7ZPqU/ffirg6enM28FdjIqkOU5dI9mlS5e/PX/w4EG1aNEil6KBs8wc3Vkt6t+vnm/MV53n3tJ/tx3WqlmvKrCEn63Pmi0HdG/wCNsROsK+mu1ZwF1frvtZs5d9d8tr+Hh76qv3w/RrzGU1ffFdtewxWUnXUvT1+2Hy8MjzmxcA+dL+fXu1bOli3XdfFbv2ka8P16mTJzXtvZn6Yvk3ahn8mIYOHqhDh/4oLJw6cUIZGYZGjYnQl1+t0tBhI7R0yWJNnzbFGbcBuDSn/hd027Zt6tev3y3PHTp0SC1atFDDhg1zOSrkJi9rAbVrWVMjp67Qlp9+0Ylff9eED7/VL79eUJ+OTWz90tJuKPbiFdsRf8V+v9E3Z32rGQs3aP+xc7e8TpXyASrm76PxM1fq2Ok4HToRowkf/kcBxX1VrnRRh94jgMyuXb2qEcOHasy4N+Xr52d3bs/PP+uFLl1V/aGHVKZsWfXt94oKF/bVoQMHJEmNmjTV+AmRatioscqULatHW7RUaPeeWv/ftc64FeQTbEhujlMTyTVr1uiLL77Q66+/btd++PBhtWjRQvXr19fSpUudFB1yg4e7mzw83JWSdt2uPSX1uhrWqmh73aROZZ1eH6k9y0dp2uvPq6ifT7auc/RUrH6/nKTQdg1VwMNdXtYC6t6ugQ6dOK/T5y7lyL0AyLq33oxQ06bNVL9B5mJBjVq1tGb1f5QQH6+MjAz959tVSk1LVZ26j9x2vKQrV+T3l4QUyBaLA498zKlrJKtWrapvv/1WLVu2VNGiRTVkyBAdPnxYzZs3V926dbVs2TK5u7v/7RipqalKTU21azMy0mVx+/v3IW9Iupaq7XtOaESfx3XkZKxiLybqudZ1VO+h8vrl1z9+PnPd1kP6KnqPTp29qAplimvcq0/qq/deVrPQScrIyNqT/UnXUhXSZ5qWTO6rEX1aS5KOn4nTU2HvKz09w2H3ByCz/3y7SocOHdSiz5fd8vw7k6Zq2OBBatqonjw8POTl5aUp095TuaCgW/Y/c/q0Plv0qcKHDHdk2ABuwekbktetW1crVqxQ27ZtlZSUpNmzZ6t27dpatmzZHR/EkaTIyEiNGzfOrs29VF0VKH37v1yRt/R84xN9OLaLTqydoBs30rX78K9asvpH1apaTpK0dM0uW98Dx89p37GzOrRynJrWqayNPxzN0jW8rAU0a0wXbdtzQqEj5srd3U0Du7XUl9NfVuOu7ygl9fqdBwHwj8WcP6+Jb0/Qh7PnyGq13rLP+zOm6cqVRH0UNU/+/kW0Ifq/GjZ4oOZ+slCV/7KeMjY2Vq+81FuPhbRWh47P5cYtIJ/K71PQjuL0RFKSWrRooUWLFqljx45q1aqVli9frgIFCmTpvSNGjFB4eLhdW8km/FV6Nzn52+9q1XuaCnp5yreQl2J+T9SCt3vo5Nnfb9n/1NmLunD5iiqWLZHlRPL5x+uoXGBRNQudZNufNHTEPJ3fPFFPPvqQXbIKwHEOHjygSxcvqlPH9ra29PR07fpxpxZ/tlBfrVytxYs+1RdfrVSlSpUlSVXuv18/7fpRiz9bqFFjImzvi4uLVe8e3VSjVi2NHjs+1+8FgJMTySJFimT6C+C7775TqVKl7NouXbr9Gjar1Zrpr1qmte9O11LSdC0lTf6FvRXcsKpGTv3qlv3uKemvYn4+ivk9MctjF/TyVEaGYbfJfYZhyDAkN/4KBXJNvfr1tWzFN3ZtY0aO0L0VKqhHrz5KSfnjQTo3i/0Sfjc3dxl/WsoSG/tHElmt2gOKeDPS9kMWgFlUJM1xaiI5depUZ14eeURwg6qyWKSjp+JUsWwJvTWonY6ejNUnX2+Tj7enRr70hFas362Y3xNVoWxxTRjQTr/8+rvWbT1kG6NsQBEV8S2osqWLyN3NTQ/dd48k6ZdfL+hqcprWbz+stwa209QRz2nm4k1ys1g0pEcr3UhP16Yfs1bVBPDP+fgUUuXK99m1eRcsKH8/f1WufJ+uX7+ucuWCNH7caIUPGS5/f39FR/9X27dt0YwPPpT0/0lk9xdVOjBQ4UOH6/Kfig3FS5TI1fsBXJ1TE8nQ0NA79klPT8+FSOBMfoW8FPHqU7qnlL8uJVzTV+t3a8z73+jGjQx5uBt6sPI96vJkPfkX9tb5Cwn677bDivhgpdKu37CNMerlNnablu/4fIQkqVXvafpu1zEdPRWrDgM+1MiXHtfG+YOVkWFoz+Hf9HTYB9mqbAJwrAIFCui9WR9p2uRJ+lf/frp27ZrKlS2n8W+9rSZNm0mStm/dojNnTuvMmdNq1aKp3fv3HDjijLCRD1CQNMdi5NEftD569KiioqL0ySef6Pz589l6r3et/g6KCoCzXd75nrNDAOAgXk4sb1Ua8h+HjX383ccdNraz5alFJdeuXdPcuXPVpEkTVatWTZs2bcr0IA0AAEBOY0Nyc/LEU9vbt2/Xxx9/rKVLl6pcuXI6dOiQNmzYoCZNmtz5zQAAAP9QPs/3HMapFclJkybpgQce0LPPPqsiRYpo8+bN2rdvnywWi4oVK+bM0AAAAHAHTq1IDh8+XMOHD1dERMQdf8EGAADAUfL7FLSjOLUiOX78eC1dulTly5fX8OHDtX//fmeGAwAAgGxwaiI5YsQIHT16VAsWLFBMTIzq1aunGjVqyDAMXb582ZmhAQAAF2KxOO7Iz5yaSJ44cUKGYahZs2aaP3++YmJi9Morr6h27dpq1qyZGjZsqMmTJzszRAAAANyGUxPJypUr68KFC7bXvXv3Vrt27bRjxw79/PPPeuSRR/T22287MUIAAOAK3NwsDjvyM6cmkn/dC/3bb7/V1atXJUnVq1fX1KlTdfbsWWeEBgAAgDvIE/tI/p0CBQo4OwQAAJDP5fe1jI7i1ETyVju+8/g9AADIbeQf5jg1kTQMQ927d5fVapUkpaSkqF+/fvLx8bHr9+WXXzojPAAAAPwNpyaSoaGhdq+7du3qpEgAAIAroyBpjlMTyblz5zrz8gAAAPgH8vzDNgAAAI7GGklznLr9DwAAAO5eVCQBAIDLoyJpDhVJAAAAmEJFEgAAuDwKkuaQSAIAAJfH1LY5TG0DAADAFCqSAADA5VGQNIeKJAAAAEyhIgkAAFweayTNoSIJAAAAU6hIAgAAl0dB0hwqkgAAADCFiiQAAHB5rJE0h4okAAAATKEiCQAAXB4FSXNIJAEAgMtjatscprYBAABgChVJAADg8ihImkNFEgAAAKZQkQQAAC6PNZLmUJEEAACAKVQkAQCAy6MgaQ4VSQAAAJhCRRIAALg81kiaQyIJAABcHnmkOUxtAwAAwBQqkgAAwOUxtW0OFUkAAACYQkUSAAC4PCqS5lCRBAAAgClUJAEAgMujIGkOFUkAAACYQkUSAAC4PNZImkMiCQAAXB55pDlMbQMAAMAUKpIAAMDlMbVtDhVJAAAAmEJFEgAAuDwKkuZQkQQAAIApVCQBAIDLc6MkaQoVSQAAgDzk7Nmz6tq1q4oVKyZvb29Vr15dP/74o+28YRgaPXq0SpcuLW9vbwUHB+vYsWN2Y1y6dEldunSRr6+v/P391atXLyUlJdn12bt3r5o0aSIvLy+VLVtWEydOzHasJJIAAMDlWSyOO7Lj8uXLatSokQoUKKD//Oc/OnjwoCZNmqQiRYrY+kycOFHTp0/XrFmztGPHDvn4+CgkJEQpKSm2Pl26dNGBAwe0bt06rVy5Ups3b1bfvn1t5xMTE9WqVSsFBQVp165deueddzR27Fh99NFH2fvcDMMwsneLeZ93rf7ODgGAg1ze+Z6zQwDgIF5OXHAX8sEOh4295pV6We772muvacuWLfruu+9ued4wDAUGBmrw4MEaMmSIJCkhIUGlSpXSvHnz1KlTJx06dEjVqlXTzp07VadOHUnS6tWr9cQTT+i3335TYGCgZs6cqZEjRyomJkaenp62a69YsUKHDx/OcrxUJAEAABwoNTVViYmJdkdqauot+3799deqU6eOOnbsqJIlS6pWrVqaPXu27fzJkycVExOj4OBgW5ufn5/q1aunbdu2SZK2bdsmf39/WxIpScHBwXJzc9OOHTtsfZo2bWpLIiUpJCRER44c0eXLl7N8bySSAADA5blZHHdERkbKz8/P7oiMjLxlHCdOnNDMmTNVuXJlrVmzRi+//LL+9a9/af78+ZKkmJgYSVKpUqXs3leqVCnbuZiYGJUsWdLuvIeHh4oWLWrX51Zj/PkaWcFT2wAAAA40YsQIhYeH27VZrdZb9s3IyFCdOnX01ltvSZJq1aql/fv3a9asWQoNDXV4rNlFRRIAALg8i8XisMNqtcrX19fuuF0iWbp0aVWrVs2urWrVqjpz5owkKSAgQJIUGxtr1yc2NtZ2LiAgQHFxcXbnb9y4oUuXLtn1udUYf75GVpBIAgAA5BGNGjXSkSNH7NqOHj2qoKAgSVL58uUVEBCg9evX284nJiZqx44datCggSSpQYMGio+P165du2x9oqOjlZGRoXr16tn6bN68WdevX7f1WbdunapUqWL3hPidkEgCAACXl1e2/xk0aJC2b9+ut956S8ePH9eiRYv00UcfKSws7P/jtGjgwIF688039fXXX2vfvn3q1q2bAgMD1a5dO0l/VDBbt26tPn366IcfftCWLVvUv39/derUSYGBgZKkzp07y9PTU7169dKBAwf0+eefa9q0aZmm4O+ENZIAAAB5RN26dbV8+XKNGDFCERERKl++vKZOnaouXbrY+gwbNkxXr15V3759FR8fr8aNG2v16tXy8vKy9Vm4cKH69++vli1bys3NTR06dND06dNt5/38/LR27VqFhYWpdu3aKl68uEaPHm2312RWsI8kgLsK+0gC+Zcz95Fs++FOh4298qW6Dhvb2ahIAgAAl+fGT22bwhpJAAAAmEJFEgAAuDxLdp+KgSQqkgAAADCJiiQAAHB5FCTNoSIJAAAAU6hIAgAAl+dGSdIUKpIAAAAwhYokAABweRQkzSGRBAAALo/tf8zJUiK5d+/eLA/40EMPmQ4GAAAAd48sJZI1a9aUxWLR7X6W++Y5i8Wi9PT0HA0QAADA0ShImpOlRPLkyZOOjgMAAAB3mSwlkkFBQY6OAwAAwGnY/sccU9v/LFiwQI0aNVJgYKBOnz4tSZo6daq++uqrHA0OAAAAeVe2E8mZM2cqPDxcTzzxhOLj421rIv39/TV16tScjg8AAMDhLA488rNsJ5IzZszQ7NmzNXLkSLm7u9va69Spo3379uVocAAAAMi7sr2P5MmTJ1WrVq1M7VarVVevXs2RoAAAAHIT+0iak+2KZPny5bV79+5M7atXr1bVqlVzIiYAAIBc5WZx3JGfZbsiGR4errCwMKWkpMgwDP3www/67LPPFBkZqY8//tgRMQIAACAPynYi2bt3b3l7e+uNN97QtWvX1LlzZwUGBmratGnq1KmTI2IEAABwKKa2zTH1W9tdunRRly5ddO3aNSUlJalkyZI5HRcAAADyOFOJpCTFxcXpyJEjkv7I4kuUKJFjQQEAAOQmCpLmZPthmytXrujFF19UYGCgmjVrpmbNmikwMFBdu3ZVQkKCI2IEAABAHpTtRLJ3797asWOHVq1apfj4eMXHx2vlypX68ccf9dJLLzkiRgAAAIeyWCwOO/KzbE9tr1y5UmvWrFHjxo1tbSEhIZo9e7Zat26do8EBAAAg78p2IlmsWDH5+fllavfz81ORIkVyJCgAAIDclN/3e3SUbE9tv/HGGwoPD1dMTIytLSYmRkOHDtWoUaNyNDgAAIDcwNS2OVmqSNaqVcvugzh27JjKlSuncuXKSZLOnDkjq9WqCxcusE4SAADARWQpkWzXrp2DwwAAAHCe/F03dJwsJZJjxoxxdBwAAAC4y5jekBwAACC/cMvnaxkdJduJZHp6uqZMmaIlS5bozJkzSktLszt/6dKlHAsOAAAAeVe2n9oeN26cJk+erOeff14JCQkKDw9X+/bt5ebmprFjxzogRAAAAMeyWBx35GfZTiQXLlyo2bNna/DgwfLw8NALL7ygjz/+WKNHj9b27dsdESMAAADyoGwnkjExMapevbokqVChQrbf127btq1WrVqVs9EBAADkAvaRNCfbiWSZMmV0/vx5SVLFihW1du1aSdLOnTtltVpzNjoAAADkWdlOJJ955hmtX79ekvTqq69q1KhRqly5srp166aePXvmeIAAAACOxhpJc7L91Pbbb79t++fnn39eQUFB2rp1qypXrqwnn3wyR4MDAADIDWz/Y062K5J/Vb9+fYWHh6tevXp66623ciImAAAA3AX+cSJ50/nz5zVq1KicGg4AACDXMLVtTo4lkgAAAHAt/EQiAABwefl9mx5HoSIJAAAAU7JckQwPD//b8xcuXPjHweSU81unOTsEAA5SpNlIZ4cAwEGSt0xw2rWprJmT5UTy559/vmOfpk2b/qNgAAAAcPfIciK5YcMGR8YBAADgNKyRNIeHbQAAgMtzI480hSUBAAAAMIWKJAAAcHlUJM2hIgkAAABTqEgCAACXx8M25piqSH733Xfq2rWrGjRooLNnz0qSFixYoO+//z5HgwMAAEDele1E8osvvlBISIi8vb31888/KzU1VZKUkJCgt956K8cDBAAAcDQ3i+OO/CzbieSbb76pWbNmafbs2SpQoICtvVGjRvrpp59yNDgAAADkXdleI3nkyJFb/oKNn5+f4uPjcyImAACAXMUSSXOyXZEMCAjQ8ePHM7V///33qlChQo4EBQAAkJvcLBaHHflZthPJPn36aMCAAdqxY4csFovOnTunhQsXasiQIXr55ZcdESMAAADyoGxPbb/22mvKyMhQy5Ytde3aNTVt2lRWq1VDhgzRq6++6ogYAQAAHIqNtc3JdiJpsVg0cuRIDR06VMePH1dSUpKqVaumQoUKOSI+AAAA5FGmNyT39PRUtWrVcjIWAAAAp8jnSxkdJtuJZPPmzf929/fo6Oh/FBAAAADuDtlOJGvWrGn3+vr169q9e7f279+v0NDQnIoLAAAg1+T3p6sdJduJ5JQpU27ZPnbsWCUlJf3jgAAAAHB3yLGHlLp27ao5c+bk1HAAAAC5xmJx3JGfmX7Y5q+2bdsmLy+vnBoOAAAg1+T338R2lGwnku3bt7d7bRiGzp8/rx9//FGjRo3KscAAAACQt2U7kfTz87N77ebmpipVqigiIkKtWrXKscAAAAByCw/bmJOtRDI9PV09evRQ9erVVaRIEUfFBAAAgLtAth62cXd3V6tWrRQfH++gcAAAAHIfD9uYk+2nth988EGdOHHCEbEAAADgLpLtRPLNN9/UkCFDtHLlSp0/f16JiYl2BwAAwN3GzeK4Iz/L8hrJiIgIDR48WE888YQk6amnnrL7qUTDMGSxWJSenp7zUQIAACDPyXIiOW7cOPXr108bNmxwZDwAAAC5zqJ8Xjp0kCwnkoZhSJKaNWvmsGAAAACcIb9PQTtKttZIWvL7o0cAAADIsmztI3nffffdMZm8dOnSPwoIAAAgt1GRNCdbieS4ceMy/bINAAAAXFO2EslOnTqpZMmSjooFAADAKVi+Z06W10jyAQMAAODPsv3UNgAAQH7DGklzspxIZmRkODIOAAAA3GWytUYSAAAgP2IFnzkkkgAAwOW5kUmakq0NyQEAAICbqEgCAACXx8M25lCRBAAAgClUJAEAgMtjiaQ5VCQBAABgChVJAADg8txESdIMKpIAAAAwhUQSAAC4PIvFccc/8fbbb8tisWjgwIG2tpSUFIWFhalYsWIqVKiQOnTooNjYWLv3nTlzRm3atFHBggVVsmRJDR06VDdu3LDrs3HjRj388MOyWq2qVKmS5s2bl+34SCQBAIDLc7M47jBr586d+vDDD/XQQw/ZtQ8aNEjffPONli5dqk2bNuncuXNq37697Xx6erratGmjtLQ0bd26VfPnz9e8efM0evRoW5+TJ0+qTZs2at68uXbv3q2BAweqd+/eWrNmTfY+N/O3BwAAAEdISkpSly5dNHv2bBUpUsTWnpCQoKioKE2ePFktWrRQ7dq1NXfuXG3dulXbt2+XJK1du1YHDx7Up59+qpo1a+rxxx/X+PHj9f777ystLU2SNGvWLJUvX16TJk1S1apV1b9/fz377LOaMmVKtuIkkQQAAC7PzWJx2JGamqrExES7IzU19W/jCQsLU5s2bRQcHGzXvmvXLl2/ft2u/f7771e5cuW0bds2SdK2bdtUvXp1lSpVytYnJCREiYmJOnDggK3PX8cOCQmxjZHlzy1bvQEAAJAtkZGR8vPzszsiIyNv23/x4sX66aefbtknJiZGnp6e8vf3t2svVaqUYmJibH3+nETePH/z3N/1SUxMVHJycpbvje1/AACAy3PkhuQjRoxQeHi4XZvVar1l319//VUDBgzQunXr5OXl5bigcggVSQAAAAeyWq3y9fW1O26XSO7atUtxcXF6+OGH5eHhIQ8PD23atEnTp0+Xh4eHSpUqpbS0NMXHx9u9LzY2VgEBAZKkgICATE9x33x9pz6+vr7y9vbO8r2RSAIAAJfnyDWS2dGyZUvt27dPu3fvth116tRRly5dbP9coEABrV+/3vaeI0eO6MyZM2rQoIEkqUGDBtq3b5/i4uJsfdatWydfX19Vq1bN1ufPY9zsc3OMrGJqGwAAII8oXLiwHnzwQbs2Hx8fFStWzNbeq1cvhYeHq2jRovL19dWrr76qBg0aqH79+pKkVq1aqVq1anrxxRc1ceJExcTE6I033lBYWJitEtqvXz+99957GjZsmHr27Kno6GgtWbJEq1atyla8JJIAAMDlOXKNZE6bMmWK3Nzc1KFDB6WmpiokJEQffPCB7by7u7tWrlypl19+WQ0aNJCPj49CQ0MVERFh61O+fHmtWrVKgwYN0rRp01SmTBl9/PHHCgkJyVYsFsMwjBy7szwiPjnd2SEAcJDSwaPv3AnAXSl5ywSnXXvezjMOG7t73XIOG9vZWCMJAAAAU5jaBgAALs9yN81t5yFUJAEAAGAKFUkAAODyqEeaQ0USAAAAplCRBAAALi+7G4fjD1QkAQAAYAoVSQAA4PKoR5pDIgkAAFweM9vmMLUNAAAAU6hIAgAAl8eG5OZQkQQAAIApVCQBAIDLo7JmDp8bAAAATKEiCQAAXB5rJM2hIgkAAABTqEgCAACXRz3SHCqSAAAAMIWKJAAAcHmskTSHRBIAALg8pmjN4XMDAACAKVQkAQCAy2Nq2xwqkgAAADCFiiQAAHB51CPNoSIJAAAAU6hIAgAAl8cSSXOoSAIAAMAUKpIAAMDlubFK0hQSSQAA4PKY2jaHqW0AAACYQkUSAAC4PAtT26ZQkQQAAIApVCQBAIDLY42kOVQkAQAAYAoVSQAA4PLY/sccKpIAAAAwhYokAABweayRNIdEEgAAuDwSSXOY2gYAAIApVCQBAIDLY0Nyc6hIAgAAwBQqkgAAwOW5UZA0hYokAAAATMnTiWRcXJzeeustZ4cBAADyOYsD/5ef5elE8vz58xo1apSzwwAAAMAtsEYSAAC4PPaRNIdEEgAAuLz8PgXtKHl6ahsAAAB5l1MrkuHh4X97/sKFC7kUCQAAcGVs/2OOUxPJn3/++Y59mjZtmguRAAAAILucmkhu2LDBmZcHAACQxBpJs/L0GslDhw5pyJAhzg4DAAAAt5DnEsmrV68qKipKDRs21AMPPKDVq1c7OyTksvT0dM16f7raPfGYmtarpfZtQxT10UwZhmHrEzHqddWrWc3uGPBKX7tx5s6epd7dOqtp/YfVsnG93L4NAJIKFfTUOwOe0JEvhuhS9FhtmNVXte+/x3b+6WbV9M2U7vrt25FK3jJBD1Uu/bfjrXg3VMlbJujJJlXt2h+tXUEbZvVV3LrROvn1a3rz5RC5u+e5/8QhD7NYHHfkZ3lm+58tW7YoKipKS5YsUXJysgYNGqQ5c+bo/vvvd3ZoyGUL5n6sL5cu1uiISFWoWEmHDu7Xm2NGqlChQnq+84u2fg0aNdaocRNsrwt4etqNc/36dbV8LETVa9TQ18u/zLX4AfzPzNeeUbUKpdQzYpnO/56oF0JqatW0nnq4yzSd+z1RBb08tXXvaX0RvV8zX3vmb8d69fmGMmRkaq9eKUAr3g3Vvz/ZqF7jlymwhK9mDH1a7m4WjXifYgTgSE79cy0uLk4TJ07U/fffr2effVb+/v7auHGj3Nzc1LNnT5JIF7V3z241fbSFGjdtpsB77lHLx0L0SINGOrh/n12/AgU8Vax4Cdvh6+tnd77vK6/qhRdDVbHSfbkZPoD/5+XpoXbNHtDI99doy55TOnH2kibMidYvv11Un2cekSR9tma3IuduUPTO43871kOVS2tAp8bq91bmPwqfbVld+3+JUeTcDTpx9pK+331KIz9Yo5c61Fehgp63GA3IzOLAIz9zaiIZFBSkffv2adq0aTp79qwmT56sOnXqODMk5AEP1aipH3ds15nTpyRJR48c1p6ff1KDRk3s+v304061bt5YHZ9+Qv+eME4J8fG5HyyA2/LwcJOHh7tS0q7btaekXlfDh4KyPI63tYDmjXlOAyd9o9hLSZnOWwt4KCXthl1bcup1eVsLqFaVezL1B27FzWJx2JGfOXVqOygoSN9//73KlSunoKAgUxXI1NRUpaam2rdleMhqteZUmMhl3Xr20dWrV/VcuzZyc3dXRnq6+vUfoNZtnrT1qd+osR5tGazAe8ro7K9n9MF7UzUw7CV9/Mkiubu7OzF6ADclXUvT9n2nNaJ7cx05fUGxl5L0XPBDqvdgOf1y9mKWx5n4rye0ff8Zrfz+0C3Pr/vhmPo/11DPBT+kZdH7FFC0sF7v0VySVLpY4Ry5FwC35tSK5OHDh/Xpp5/q/Pnzqlu3rmrXrq0pU6ZIkixZzOAjIyPl5+dnd0x5521Hhg0H++/a1Vr97UpFRL6jTz5bptHjI7Xwk7la9fUKW59WrZ9Q00dbqFLl+9SsRbAmT5+pgwf26acff3Be4AAy6Tl+mSwWi0589ZoSNoxTWMeGWvLfvcrIyLzW8VbaNL5fj9auoKHTVt22z/ofjuv191dr+tCnlbBhnPYuHqQ1245KkjKMrF0HYGrbHKc/bNOoUSM1atRI06dP12effaa5c+cqPT1dr7zyijp37qx27dqpRIkSt33/iBEjMv1CTnKG028L/8CMKe+qW4/eatX6CUlSpcr3Keb8Oc2fM1ttnmp3y/fcU6as/IsU0a+/nlHdeg1yMVoAf+fk2Utq1f9jFfQqIF8fL8VcvKIFEc/r5LnLWXr/o7UrqMI9RRWz+g279s8mdNaWPacU8mqUJGn651s0/fMtKl28sC4nJiuodBGNfzlEJ89eyvF7AvA/eSbjKlSokPr06aM+ffro0KFDioqK0htvvKFXXnlF169fv+37rFZrpmnsjOR0R4cLB0pJSZabm32x3M3NTRkZGbd9T2xsjBLi41W8+O3/6ADgPNdSrutaynX5F/ZS8COVNfKDNVl637sLNmvu1z/ate36dICGTf9Wq7YcztT//O9XJEnPPfaQfo2J189Hz/3z4OEa8nvp0EHyTCL5Z1WrVtW7776rt99+W19//bWzw0Eua9K0ueZ+/KFKBZRWhYqVdPTIIX326Xw9+XR7SdK1a1f18awP1Dy4lYoVK66zv53RjKmTVKZsOdVv2Ng2Tsz5c0pMSFBMzHllZKTr6OE/1leVKVdOBQv6OOXeAFcT/EglWSwWHT3zuyqWKaq3wh7X0TMX9MmqXZKkIoW9VTbAX6WL/7GW8b5yxSVJsRevKPZSku34q19j43X6/P+qmoM6N9ba7ceUYRh6utkDGtK1qbqOWpzlKXQA5jg1kVyyZInatWsnz//f/++3335TYGCgrRqVlpam48f/fksI5D+DXxupD9+frnciI3T50iUVL1FSz3R4Tr1eelmS5ObmruPHjurbb77SlSuJKlGipB5p0Egvhb1q+/+SJH30wXta9c0K2+sXO3WQJH0we55q130kV+8JcFV+hbwU0a+V7inhp0uJyfpq0wGN+XCtbqT/McPQpsn9mj3yWVv/BRGdJElvRq3XhDnRWb5Oq/r3aVi3R2X19NC+4+fV8bWFWrv9aM7eDPI1fiLRHIthOG8lsru7u86fP6+SJUtKknx9fbV7925VqFBBkhQbG6vAwEClp2dvqjqeqW0g3yodPNrZIQBwkOQtE+7cyUF2/JLgsLHrVfS7c6e7lFMrkn/NYZ2Y0wIAABeWz7d7dJg8uUYSAAAgN5FHmsMv2gMAAMAUp1ck16xZIz+/P9YOZGRkaP369dq/f78kKZ6fvAMAALmBkqQpTk8kQ0ND7V6/9NJLTooEAAAA2eHURPLvNpi+6dq1a7kQCQAAcGVs/2NOnl0jmZqaqsmTJ9u2AgIAAEDe4tREMjU1VSNGjFCdOnXUsGFDrVixQpI0Z84clS9fXlOmTNGgQYOcGSIAAHABFovjjvzMqVPbo0eP1ocffqjg4GBt3bpVHTt2VI8ePbR9+3ZNnjxZHTt2lLu7uzNDBAAAwG04NZFcunSpPvnkEz311FPav3+/HnroId24cUN79uyRJb+n8AAAIM8g6zDHqYnkb7/9ptq1a0uSHnzwQVmtVg0aNIgkEgAA5C5SD1OcukYyPT1dnp6ettceHh4qVKiQEyMCAABAVjn9t7a7d+8uq9UqSUpJSVG/fv3k4+Nj1+/LL790RngAAMBFsP2POU5NJP+6GXnXrl2dFAkAAACyy6mJ5Ny5c515eQAAAEn5f5seR8mzG5IDAAAgb3P6b20DAAA4GwVJc6hIAgAAwBQqkgAAAJQkTSGRBAAALo/tf8xhahsAAACmUJEEAAAuj+1/zKEiCQAAAFOoSAIAAJdHQdIcKpIAAAAwhYokAAAAJUlTqEgCAADAFCqSAADA5bGPpDlUJAEAAPKIyMhI1a1bV4ULF1bJkiXVrl07HTlyxK5PSkqKwsLCVKxYMRUqVEgdOnRQbGysXZ8zZ86oTZs2KliwoEqWLKmhQ4fqxo0bdn02btyohx9+WFarVZUqVdK8efOyHS+JJAAAcHkWi+OO7Ni0aZPCwsK0fft2rVu3TtevX1erVq109epVW59Bgwbpm2++0dKlS7Vp0yadO3dO7du3t51PT09XmzZtlJaWpq1bt2r+/PmaN2+eRo8ebetz8uRJtWnTRs2bN9fu3bs1cOBA9e7dW2vWrMne52YYhpG9W8z74pPTnR0CAAcpHTz6zp0A3JWSt0xw2rUPnbt6504mVQ30Mf3eCxcuqGTJktq0aZOaNm2qhIQElShRQosWLdKzzz4rSTp8+LCqVq2qbdu2qX79+vrPf/6jtm3b6ty5cypVqpQkadasWRo+fLguXLggT09PDR8+XKtWrdL+/ftt1+rUqZPi4+O1evXqLMdHRRIAAMCBUlNTlZiYaHekpqZm6b0JCQmSpKJFi0qSdu3apevXrys4ONjW5/7771e5cuW0bds2SdK2bdtUvXp1WxIpSSEhIUpMTNSBAwdsff48xs0+N8fIKhJJAAAAi+OOyMhI+fn52R2RkZF3DCkjI0MDBw5Uo0aN9OCDD0qSYmJi5OnpKX9/f7u+pUqVUkxMjK3Pn5PIm+dvnvu7PomJiUpOTr5jbDfx1DYAAIADjRgxQuHh4XZtVqv1ju8LCwvT/v379f333zsqtH+MRBIAALg8R27/Y7Vas5Q4/ln//v21cuVKbd68WWXKlLG1BwQEKC0tTfHx8XZVydjYWAUEBNj6/PDDD3bj3Xyq+899/vqkd2xsrHx9feXt7Z3lOJnaBgAAyCMMw1D//v21fPlyRUdHq3z58nbna9eurQIFCmj9+vW2tiNHjujMmTNq0KCBJKlBgwbat2+f4uLibH3WrVsnX19fVatWzdbnz2Pc7HNzjKyiIgkAAFxedrfpcZSwsDAtWrRIX331lQoXLmxb0+jn5ydvb2/5+fmpV69eCg8PV9GiReXr66tXX31VDRo0UP369SVJrVq1UrVq1fTiiy9q4sSJiomJ0RtvvKGwsDBbZbRfv3567733NGzYMPXs2VPR0dFasmSJVq1ala142f4HwF2F7X+A/MuZ2/8cibnmsLGrBBTMcl/LbTLauXPnqnv37pL+2JB88ODB+uyzz5SamqqQkBB98MEHtmlrSTp9+rRefvllbdy4UT4+PgoNDdXbb78tD4//1RA3btyoQYMG6eDBgypTpoxGjRplu0aW4yWRBHA3IZEE8i9nJpJHHZhI3peNRPJuw9Q2AABAHpnavtvwsA0AAABMoSIJAABcniO3/8nPqEgCAADAFCqSAADA5eWV7X/uNlQkAQAAYAoVSQAA4PIoSJpDRRIAAACmUJEEAACgJGkKiSQAAHB5bP9jDlPbAAAAMIWKJAAAcHls/2MOFUkAAACYQkUSAAC4PAqS5lCRBAAAgClUJAEAAChJmkJFEgAAAKZQkQQAAC6PfSTNIZEEAAAuj+1/zGFqGwAAAKZQkQQAAC6PgqQ5VCQBAABgChVJAADg8lgjaQ4VSQAAAJhCRRIAAIBVkqZQkQQAAIApVCQBAIDLY42kOSSSAADA5ZFHmsPUNgAAAEyhIgkAAFweU9vmUJEEAACAKVQkAQCAy7OwStIUKpIAAAAwhYokAAAABUlTqEgCAADAFCqSAADA5VGQNIdEEgAAuDy2/zGHqW0AAACYQkUSAAC4PLb/MYeKJAAAAEyhIgkAAEBB0hQqkgAAADCFiiQAAHB5FCTNoSIJAAAAU6hIAgAAl8c+kuaQSAIAAJfH9j/mMLUNAAAAU6hIAgAAl8fUtjlUJAEAAGAKiSQAAABMIZEEAACAKayRBAAALo81kuZQkQQAAIApVCQBAIDLYx9Jc0gkAQCAy2Nq2xymtgEAAGAKFUkAAODyKEiaQ0USAAAAplCRBAAAoCRpChVJAAAAmEJFEgAAuDy2/zGHiiQAAABMoSIJAABcHvtImkNFEgAAAKZQkQQAAC6PgqQ5JJIAAABkkqYwtQ0AAABTqEgCAACXx/Y/5lCRBAAAgClUJAEAgMtj+x9zqEgCAADAFIthGIazgwDMSk1NVWRkpEaMGCGr1erscADkIL7fQN5HIom7WmJiovz8/JSQkCBfX19nhwMgB/H9BvI+prYBAABgCokkAAAATCGRBAAAgCkkkrirWa1WjRkzhoX4QD7E9xvI+3jYBgAAAKZQkQQAAIApJJIAAAAwhUQSAAAAppBIAgAAwBQSSeQJ3bt3l8ViyXQcP35ckhQZGSl3d3e98847md47b948+fv727UdOnRIZcuWVceOHZWWlqZ58+bdcnwvL6/cuD3AZf35u12gQAGVL19ew4YNU0pKiq3Prb6bFotFixcvzjTe/fffL6vVqpiYmEznHn30UQ0cONCRtwPgL0gkkWe0bt1a58+ftzvKly8vSZozZ46GDRumOXPm3HGcnTt3qkmTJmrdurU+//xzeXp6SpJ8fX0zjX/69GmH3hOA/323T5w4oSlTpujDDz/UmDFj7PrMnTs30/ezXbt2dn2+//57JScn69lnn9X8+fNz8Q4A3A6JJPIMq9WqgIAAu8Pd3V2bNm1ScnKyIiIilJiYqK1bt952jOjoaLVo0UK9evXS7Nmz5eb2v/+LWyyWTOOXKlUqN24NcGk3v9tly5ZVu3btFBwcrHXr1tn18ff3z/T9/OuMQVRUlDp37qwXX3wxS39UAnA8EknkeVFRUXrhhRdUoEABvfDCC4qKirplv+XLl6tNmzZ644039O9//zuXowSQFfv379fWrVttMwVZdeXKFS1dulRdu3bVY489poSEBH333XcOihJAVpFIIs9YuXKlChUqZDs6duyoxMRELVu2TF27dpUkde3aVUuWLFFSUpLde5OSktSxY0cNHTpUw4cPv+X4CQkJduMXKlRIjz/+uMPvC3B1N7/bXl5eql69uuLi4jR06FC7Pi+88EKm7+eZM2ds5xcvXqzKlSvrgQcekLu7uzp16nTbPyoB5B4PZwcA3NS8eXPNnDnT9trHx0efffaZKlasqBo1akiSatasqaCgIH3++efq1auXra+3t7caN26s2bNn64UXXlDVqlUzjV+4cGH99NNPdm3e3t4OuhsAN938bl+9elVTpkyRh4eHOnToYNdnypQpCg4OtmsLDAy0/fOcOXNsf1BKf/xR2axZM82YMUOFCxd27A0AuC0SSeQZPj4+qlSpkl1bVFSUDhw4IA+P//1fNSMjQ3PmzLFLJN3d3bVixQq1b99ezZs314YNGzIlk25ubpnGB+B4f/5uz5kzRzVq1FBUVJTddzggIOC238+DBw9q+/bt+uGHH+xmHNLT07V48WL16dPHsTcA4LaY2kaetW/fPv3444/auHGjdu/ebTs2btyobdu26fDhw3b9rVarvvzyS9WtW1fNmzfXwYMHnRQ5gNtxc3PT66+/rjfeeEPJyclZek9UVJSaNm2qPXv22P27IDw8nOltwMmoSCLPioqK0iOPPKKmTZtmOle3bl1FRUVl2lfSarXqiy++UMeOHdW8eXNFR0frgQcekCQZhnHLvedKlixp93Q3AMe6uZ75/fff15AhQyRJ8fHxmb6fhQsXlqenpxYsWKCIiAg9+OCDdud79+6tyZMn68CBA7bv+YULF7R79267fqVLl2aHBsBB+K8n8qS0tDR9+umnmdZR3dShQwd98sknun79eqZznp6eWrZsmRo2bKjmzZtr//79kqTExESVLl060xEXF+fQewFgz8PDQ/3799fEiRN19epVSVKPHj0yfTdnzJihr7/+WhcvXtQzzzyTaZyqVauqatWqdlXJRYsWqVatWnbH7Nmzc+3eAFdjMQzDcHYQAAAAuPtQkQQAAIApJJIAAAAwhUQSAAAAppBIAgAAwBQSSQAAAJhCIgkAAABTSCQBAABgCokkAAAATCGRBJBjunfvrnbt2tleP/rooxo4cGCux7Fx40ZZLBbFx8c77Bp/vVczciNOAHAkEkkgn+vevbssFossFos8PT1VqVIlRURE6MaNGw6/9pdffqnx48dnqW9uJ1X33nuvpk6dmivXAoD8ysPZAQBwvNatW2vu3LlKTU3Vt99+q7CwMBUoUEAjRozI1DctLU2enp45ct2iRYvmyDgAgLyJiiTgAqxWqwICAhQUFKSXX35ZwcHB+vrrryX9b4p2woQJCgwMVJUqVSRJv/76q5577jn5+/uraNGievrpp3Xq1CnbmOnp6QoPD5e/v7+KFSumYcOGyTAMu+v+dWo7NTVVw4cPV9myZWW1WlWpUiVFRUXp1KlTat68uSSpSJEislgs6t69uyQpIyNDkZGRKl++vLy9vVWjRg0tW7bM7jrffvut7rvvPnl7e6t58+Z2cZqRnp6uXr162a5ZpUoVTZs27ZZ9x40bpxIlSsjX11f9+vVTWlqa7VxWYgeAuxkVScAFeXt76+LFi7bX69evl6+vr9atWydJun79ukJCQtSgQQN999138vDw0JtvvqnWrVtr79698vT01KRJkzRv3jzNmTNHVatW1aRJk7R8+XK1aNHittft1q2btm3bpunTp6tGjRo6efKkfv/9d5UtW1ZffPGFOnTooCNHjsjX11fe3t6SpMjISH366aeaNWuWKleurM2bN6tr164qUaKEmjVrpl9//VXt27dXWFiY+vbtqx9//FGDBw/+R59PRkaGypQpo6VLl6pYsWLaunWr+vbtq9KlS+u5556z+9y8vLy0ceNGnTp1Sj169FCxYsU0YcKELMUOAHc9A0C+Fhoaajz99NOGYRhGRkaGsW7dOsNqtRpDhgyxnS9VqpSRmppqe8+CBQuMKlWqGBkZGba21NRUw9vb21izZo1hGIZRunRpY+LEibbz169fN8qUKWO7lmEYRrNmzYwBAwYYhmEYR44cMSQZ69atu2WcGzZsMCQZly9ftrWlpKQYBQsWNLZu3WrXt1evXsYLL7xgGIZhjBgxwqhWrZrd+eHDh2ca66+CgoKMKVOm3Pb8X4WFhRkdOnSwvQ4NDTWKFi1qXL161dY2c+ZMo1ChQkZ6enqWYr/VPQPA3YSKJOACVq5cqUKFCun69evKyMhQ586dNXbsWNv56tWr262L3LNnj44fP67ChQvbjZOSkqJffvlFCQkJOn/+vOrVq2c75+HhoTp16mSa3r5p9+7dcnd3z1Yl7vjx47p27Zoee+wxu/a0tDTVqlVLknTo0CG7OCSpQYMGWb7G7bz//vuaM2eOzpw5o+TkZKWlpalmzZp2fWrUqKGCBQvaXTcpKUm//vqrkpKS7hg7ANztSCQBF9C8eXPNnDlTnp6eCgwMlIeH/Vffx8fH7nVSUpJq166thQsXZhqrRIkSpmK4OVWdHUlJSZKkVatW6Z577rE7Z7VaTcWRFYsXL9aQIUM0adIkNWjQQIULF9Y777yjHTt2ZHkMZ8UOALmJRBJwAT4+PqpUqVKW+z/88MP6/PPPVbJkSfn6+t6yT+nSpbVjxw41bdpUknTjxg3t2rVLDz/88C37V69eXRkZGdq0aZOCg4Mznb9ZEU1PT7e1VatWTVarVWfOnLltJbNq1aq2B4du2r59+51v8m9s2bJFDRs21CuvvGJr++WXXzL127Nnj5KTk21J8vbt21WoUCGVLVtWRYsWvWPsAHC346ltAJl06dJFxYsX19NPP63vvvtOJ0+e1MaNG/Wvf/1Lv/32myRpwIABevvtt7VixQodPnxYr7zyyt/uAXnvvfcqNDRUPXv21IoVK2xjLlmyRJIUFBQki8WilStX6sKFC0pKSlLhwoU1ZMgQDRo0SPPnz9cvv/yin376STNmzND8+fMlSf369dOxY8c0dOhQHTlyRIsWLdK8efOydJ9nz57V7t277Y7Lly+rcuXK+vHHH7VmzRodPXpUo0aN0s6dOzO9Py0tTb169dLBgwf17bffasyYMerfv7/c3NyyFDsA3PWcvUgTgGP9+WGb7Jw/f/680a1bN6N48eKG1Wo1KlSoYPTp08dISEgwDOOPh2sGDBhg+Pr6Gv7+/kZ4eLjRrVu32z5sYxiGkZycbAwaNMgoXbq04enpaVSqVMmYM2eO7XxERIQREBBgWCwWIzQ01DCMPx4Qmjp1qlGlShWjQIECRokSJYyQkBBj06ZNtvd98803RqVKlQyr1Wo0adLEmDNnTpYetpGU6ViwYIGRkpJidO/e3fDz8zP8/f2Nl19+2XjttdeMGjVqZPrcRo8ebRQrVswoVKiQ0adPHyMlJcXW506x87ANgLudxTBuszIeAAAA+BtMbQMAAMAUEkkAAACYQiIJAAAAU0gkAQAAYAqJJAAAAEwhkQQAAIApJJIAAAAwhUQSAAAAppBIAgAAwBQSSQAAAJhCIgkAAABT/g+MrQglwQNlSQAAAABJRU5ErkJggg==\n",
            "text/plain": [
              "<Figure size 800x600 with 2 Axes>"
            ]
          },
          "metadata": {},
          "output_type": "display_data"
        }
      ],
      "source": [
        "import numpy as np\n",
        "from sklearn.metrics import classification_report, confusion_matrix\n",
        "import seaborn as sns\n",
        "import matplotlib.pyplot as plt\n",
        "\n",
        "# استخراج برچسب‌های واقعی و پیش‌بینی‌های مدل از داده‌های تست\n",
        "y_true = []\n",
        "# ابتدا پیش‌بینی‌های مدل را در یک لیست ذخیره می کنیم\n",
        "y_pred_probs = []\n",
        "\n",
        "\n",
        "for images, labels in test_data:\n",
        "    y_true.extend(labels.numpy())\n",
        "    y_pred_probs.extend(model.predict(images))\n",
        "\n",
        "# تبدیل احتمالات به برچسب‌های باینری (0 یا 1)\n",
        "y_pred = np.round(np.array(y_pred_probs).flatten())\n",
        "\n",
        "# نام کلاس‌ها\n",
        "target_names = ['FAKE', 'REAL']\n",
        "\n",
        "\n",
        "print(\"\\nClassification Report:\")\n",
        "print(classification_report(y_true, y_pred, target_names=target_names))\n",
        "\n",
        "# رسم ماتریس درهم‌ریختگی\n",
        "cm = confusion_matrix(y_true, y_pred)\n",
        "plt.figure(figsize=(8, 6))\n",
        "sns.heatmap(cm, annot=True, fmt='d', cmap='Blues', xticklabels=target_names, yticklabels=target_names)\n",
        "plt.xlabel('Predicted Label')\n",
        "plt.ylabel('True Label')\n",
        "plt.title('Confusion Matrix')\n",
        "plt.show()"
      ]
    }
  ],
  "metadata": {
    "accelerator": "GPU",
    "colab": {
      "gpuType": "T4",
      "provenance": []
    },
    "kernelspec": {
      "display_name": "Python 3",
      "name": "python3"
    },
    "language_info": {
      "name": "python"
    }
  },
  "nbformat": 4,
  "nbformat_minor": 0
}