|
--- |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- preprocessed1024_config |
|
metrics: |
|
- accuracy |
|
- f1 |
|
model-index: |
|
- name: convnext-mlo-512-breat_composition-ordinal |
|
results: |
|
- task: |
|
name: Image Classification |
|
type: image-classification |
|
dataset: |
|
name: preprocessed1024_config |
|
type: preprocessed1024_config |
|
args: default |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: |
|
accuracy: 0.12185929648241206 |
|
- name: F1 |
|
type: f1 |
|
value: |
|
f1: 0.05431131019036954 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# convnext-mlo-512-breat_composition-ordinal |
|
|
|
This model is a fine-tuned version of [](https://huggingface.co/) on the preprocessed1024_config dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0275 |
|
- Accuracy: {'accuracy': 0.12185929648241206} |
|
- F1: {'f1': 0.05431131019036954} |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |
|
|:-------------:|:-----:|:----:|:---------------:|:----------------------------------:|:----------------------------:| |
|
| 0.0233 | 1.0 | 796 | 0.0269 | {'accuracy': 0.042085427135678394} | {'f1': 0.02019288728149488} | |
|
| 0.0202 | 2.0 | 1592 | 0.0250 | {'accuracy': 0.09610552763819095} | {'f1': 0.043839541547277934} | |
|
| 0.0183 | 3.0 | 2388 | 0.0248 | {'accuracy': 0.07977386934673367} | {'f1': 0.036940081442699245} | |
|
| 0.0163 | 4.0 | 3184 | 0.0259 | {'accuracy': 0.17022613065326633} | {'f1': 0.07273215244229736} | |
|
| 0.0144 | 5.0 | 3980 | 0.0258 | {'accuracy': 0.146356783919598} | {'f1': 0.06383561643835617} | |
|
| 0.0117 | 6.0 | 4776 | 0.0249 | {'accuracy': 0.0992462311557789} | {'f1': 0.045142857142857144} | |
|
| 0.0105 | 7.0 | 5572 | 0.0256 | {'accuracy': 0.10238693467336683} | {'f1': 0.04643874643874644} | |
|
| 0.0084 | 8.0 | 6368 | 0.0261 | {'accuracy': 0.12185929648241206} | {'f1': 0.05431131019036954} | |
|
| 0.0071 | 9.0 | 7164 | 0.0270 | {'accuracy': 0.10238693467336683} | {'f1': 0.04643874643874644} | |
|
| 0.0065 | 10.0 | 7960 | 0.0275 | {'accuracy': 0.12185929648241206} | {'f1': 0.05431131019036954} | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.20.1 |
|
- Pytorch 1.12.0 |
|
- Datasets 2.1.0 |
|
- Tokenizers 0.12.1 |
|
|