osbm's picture
update model card README.md
16d580e
|
raw
history blame
3.04 kB
metadata
tags:
  - generated_from_trainer
datasets:
  - preprocessed1024_config
metrics:
  - accuracy
  - f1
model-index:
  - name: convnext-mlo-512-breat_composition-ordinal
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: preprocessed1024_config
          type: preprocessed1024_config
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value:
              accuracy: 0.12185929648241206
          - name: F1
            type: f1
            value:
              f1: 0.05431131019036954

convnext-mlo-512-breat_composition-ordinal

This model is a fine-tuned version of on the preprocessed1024_config dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0275
  • Accuracy: {'accuracy': 0.12185929648241206}
  • F1: {'f1': 0.05431131019036954}

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
0.0233 1.0 796 0.0269 {'accuracy': 0.042085427135678394} {'f1': 0.02019288728149488}
0.0202 2.0 1592 0.0250 {'accuracy': 0.09610552763819095} {'f1': 0.043839541547277934}
0.0183 3.0 2388 0.0248 {'accuracy': 0.07977386934673367} {'f1': 0.036940081442699245}
0.0163 4.0 3184 0.0259 {'accuracy': 0.17022613065326633} {'f1': 0.07273215244229736}
0.0144 5.0 3980 0.0258 {'accuracy': 0.146356783919598} {'f1': 0.06383561643835617}
0.0117 6.0 4776 0.0249 {'accuracy': 0.0992462311557789} {'f1': 0.045142857142857144}
0.0105 7.0 5572 0.0256 {'accuracy': 0.10238693467336683} {'f1': 0.04643874643874644}
0.0084 8.0 6368 0.0261 {'accuracy': 0.12185929648241206} {'f1': 0.05431131019036954}
0.0071 9.0 7164 0.0270 {'accuracy': 0.10238693467336683} {'f1': 0.04643874643874644}
0.0065 10.0 7960 0.0275 {'accuracy': 0.12185929648241206} {'f1': 0.05431131019036954}

Framework versions

  • Transformers 4.20.1
  • Pytorch 1.12.0
  • Datasets 2.1.0
  • Tokenizers 0.12.1